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Mesh Deformation
Mesh deformation has been a core research topic in geometry 

processing and computer graphics.

2

Differential Coordinates for Interactive Mesh Editing,
Lipman et al., SGP 2004



Mesh Deformation
Various techniques have been proposed and integrated into graphics 

pipelines to offer intuitive control for human artists.

3

Cage-Based Deformation [2]

[1] https://blender.stackexchange.com/questions/120157/blender-2-8-where-is-the-axes-tool-for-moving-vertices-visually
[2] https://blendermarket.com/products/deform-pro

Vertex-Wise Displacement [1]

https://blender.stackexchange.com/questions/120157/blender-2-8-where-is-the-axes-tool-for-moving-vertices-visually
https://blendermarket.com/products/deform-pro


Mesh Deformation Using Geometric Priors
The success of existing techniques is largely attributed to leveraging 

geometric priors.

4

Laplacian Mesh Processing, 
Sorkine, Eurographics 2005

Laplacian Surface Editing,
Sorkine et al., SGP 2004



Mesh Deformation Using Geometric Priors
Handcrafted geometric priors may fail to capture behaviors of 

surfaces under deformation, requiring manual adjustments.

5
Geometry Processing – Deformation,

Jacobson

https://github.com/alecjacobson/geometry-processing-deformation


Recent approaches propose to learn deformation priors from 

large-scale datasets consisting of hundreds of shape exemplars.
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ShapeNet Chair,
Chang et al., arXiv Preprint 2015

Machine Learning for 3D Data,
Stanford CS468

Mesh Deformation Using Learned Priors

https://kaolin.readthedocs.io/en/v0.1/notes/datasets_tutorial.html
https://graphics.stanford.edu/courses/cs468-17-spring/


Learned priors can better capture categoric-specific shape variations 

and reveal easy-to-use handles for making deformations.
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KeypointDeformer,
Jakab et al., CVPR 2021

DeepMetaHandles,
Liu et al., CVPR 2021

Mesh Deformation Using Learned Priors



Mesh Deformation Using Learned Priors

8

Collecting 3D shapes is challenging, and existing datasets are 

restricted to a limited number of shape categories.

ShapeNetCore Dataset

55 Categories, ~60K Examples
LAION-5B Text-to-Image Dataset

5.8B Examples



Mesh Deformation Using Learned Priors
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This issue becomes more significant for shapes with minimal or no 

variation, making it difficult to learn such priors.

Adobe Mixamo Dataset,
Adobe

https://www.mixamo.com/


Mesh Deformation

10

Neural Pose Representation, NeurIPS 2024

Seungwoo Yoo, Juil Koo, Kyeongmin Yeo, Minhyuk Sung

Representation Learning for Non-Rigid Object Pose Transfer

Given a single shape and its poses,
how can we transfer those poses to another shape?



Mesh Deformation

11

Collecting deformation examples for arbitrary 3D shapes and 

categories is even infeasible.

The BEHAVIOR Dataset of Objects,
Srivastava, CoRL 2021

https://stanfordvl.github.io/behavior/objects.html


Mesh Deformation
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Differentiable renderers bridge images and meshes, enabling the 

modification of mesh properties through backpropagation.

Soft Rasterizer,
Liu et al., ICCV 2019

Large Steps in Inverse Rendering of Geometry,
Nicolet et al., ACM ToG 2021



Mesh Deformation
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SotA image generators are trained on internet-scale datasets, 

achieving impressive generative capabilities.

Stable Diffusion 3,
Esser et al., ICML 2024



As-Plausible-As-Possible (APAP), CVPR 2024

Seungwoo Yoo*, Kunho Kim*, Vladimir G. Kim, Minhyuk Sung

Mesh Deformation
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Pretrained Image Diffusion Model

With only 2D generative models trained on large datasets,
how can we distill their prior knowledge for mesh deformation?

Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors



Representation Learning for 
Non-Rigid Object Pose Transfer

15
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Problem Definition

Source Template Mesh Posed Examples of the Source Template Mesh

Target Template Mesh Posed Examples of the Target Template Mesh
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Related Work
This problem has been extensively studied in computer graphics. 

Existing works can be summarized into three categories:

1. Pose Transfer Using Pointwise Correspondences

2. Pose Transfer Using Skeletons

3. Pose Transfer Using Learned Parameterizations
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Pose Transfer Using Pointwise Correspondences

(-) Requires manual pointwise correspondence annotations.

Deformation Transfer for Triangle Meshes,

Sumner and Popovic, SIGGRAPH 2004
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Pose Transfer Using Skeletons

(-) Requires a shared skeletal structure. 

SMPL-X,

Pavlakos et al., CVPR 2019

DeformingThings4D Dataset,

Li et al., ICCV 2021
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Pose Transfer Using Learned Parameterizations

(-) Requires the target template and its posed examples.

Template Pose Examples



21

Pose Transfer Using Learned Parameterizations

(-) Requires various target templates and examples for generalization.

Template Pose Examples
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Pose Transfer Using Learned Parameterizations

(-) Still requires various target templates.

Template Pose Examples
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Pose Transfer Using Learned Parameterizations

Encoding pose examples into abstract global embeddings is limiting 

the generalization capability.

Skeleton-Free Pose Transfer for Stylized 3D Characters,

Liao et al., ECCV 2022
Zero-shot Pose Transfer, Wang et al., CVPR 2023
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Pose Transfer Using Learned Parameterizations

(+) Only requires one template and its posed examples.



Key Idea
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Extract poses as a keypoint-based neural representation
and transfer them by predicting local surface transformations.



3D keypoint obtained via farthest point sampling.

Our pose representation combines keypoints in 3D space and per-

point neural features to capture both shape extrinsic and intrinsic.

Neural feature encoded from the mesh vertex coordinates.

Keypoint-based Neural Pose Representation

26



The 3D keypoints in our representation explicitly represent

a rough silhouette of the given pose example.

Keypoint-based Neural Pose Representation

27



They enable distance-based queries, facilitating neural feature 

aggregation at adjacent and relevant regions.

Keypoint-based Neural Pose Representation
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Meanwhile, previous works encode input shapes as abstract global 

embeddings, limiting their generalizability.

Keypoint-based Neural Pose Representation

29



Decoding Features to Mesh Jacobians

30

The aggregated features are decoded to per-triangle Jacobians 

representing local transforms, instead of vertex coordinates.



Decoding Features to Mesh Jacobians

31

Jacobian matrix is a gradient-domain representation, highly effective 

in preserving local details.

Poisson Image Editing,
Perez et al., ACM ToG 2003

Poisson Mesh Editing,
Yu et al., ACM ToG 2004



Decoding Features to Mesh Jacobians
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Given a mesh ℳ = 𝐕, 𝐅  with vertices 𝐕 and faces 𝐅, consider the 

spatial derivative 𝛁𝜙 of a scalar-valued function 𝜙: 𝐕 → ℝ.

𝜙(𝑖)

𝜙(𝑗)

𝜙(𝑘)



Decoding Features to Mesh Jacobians
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Assuming the piece-wise linearity of 𝜙, we discretize the derivative at 

each triangle 𝐟 ∈ 𝐅 using the per-triangle gradient operator 𝛁𝐟.

𝜙(𝑖)

𝜙(𝑗)

𝜙(𝑘)

𝛁𝐟𝜙



Decoding Features to Mesh Jacobians
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Regarding each component of vertex coordinates as such a function, 

we define the per-triangle Jacobian matrix 𝐉𝐟 = 𝛁𝐟𝐕 ∈ ℝ3×3.

𝜙(𝑖)

𝜙(𝑗)

𝜙(𝑘)

𝐉𝐟 = 𝛁𝐟𝜙



Decoding Features to Mesh Jacobians
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We can represent ℳ as a collection of per-triangle Jacobian matrices, 

denoted as the Jacobian field 𝐉 ∈ ℝ3|𝐅|×3 of ℳ.

𝐉 = 𝛁𝐕



Decoding Features to Mesh Jacobians
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Conversely, ℳ can be recovered from a given Jacobian field 𝐉 by 

solving the Poisson’s equation.

𝐉 = 𝛁𝐕

𝐕∗ = argmin
𝐕

∥ 𝐋𝐕 − 𝛁𝑇𝒜𝐉 ∥2

Mesh Laplacian (ℝ|𝐕| ×|𝐕|) Mass Matrix (ℝ3|𝐅|×3|𝐅|)



Decoding Features to Mesh Jacobians
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Being a dual representation of ℳ, representing a shape as a Jacobian 

field offers several advantages: 

• Local Detail Preservation

• Differentiability

• Prefactorization for Fast Forward Passes
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Predicting Jacobian fields instead of vertex coordinates plays a crucial 

role in producing smooth surfaces after pose transfer.

Pose Example Ours (Vertex) Ours (Jacobian)

Decoding Features to Mesh Jacobians



Neural Pose Representation Learning
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𝑔 ℎ

The pose extractor 𝑔 and pose applier ℎ are designed to extract our 

pose representation and transfer the pose to different shapes. 



Neural Pose Representation Learning
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𝑔 ℎ

During training, we update the network parameters by minimizing the 

reconstruction loss using the source template and its pose examples.

ℒ



Neural Pose Representation Learning
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At inference time, we only replace the template mesh given to the 

pose applier to transfer poses.

𝑔 ℎ
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Experiment Setup

We consider the current state-of-the-art methods as our baselines:

• Neural Jacobian Fields (NJF) [1]

• Skeleton-Free Pose Transfer (SPT) [2]

• Zero-shot Pose Transfer (ZPT) [3]

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023



43

Experiment Setup

We use DeformingThings4D-Animals to test pose transfer among 

shapes with no shared skeletal structure.

DeformingThings4D Dataset,

Li et al., ICCV 2021

• 9 shapes with 300 pose examples;

• Transfer poses to the other 8 shapes.
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Experiment Setup

We populate SMPL human body shapes with known vertex-wise 

correspondences to measure pose transfer accuracy.

SMPL-X,

Pavlakos et al., CVPR 2019

• 1 human shape with 300 pose variations;

• 40 different human shapes for testing;

• Correspondences for quantitative evaluation.



45

Experiment Setup

We additionally collect 9 stylized characters from the Adobe Mixamo 

dataset to assess generalization in real-world scenarios.

Adobe Mixamo Dataset,
Adobe

https://www.mixamo.com/
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Experiment Setup

For quantitative evaluation, we use the following metrics:

• DeformingThings4D-Animals (Correspondence )

• FID (Fréchet Inception Distance)

• KID (Kernel Inception Distance)

• ResNet Classification Accuracy

• SMPL Human Body (Correspondence )

• PMD (Point-wise Mesh Euclidean Distance)

• FID (Fréchet Inception Distance)

• KID (Kernel Inception Distance)

• ResNet Classification Accuracy
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Pose Transfer on DeformingThings4D

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

Target Template Pose Example NJF [1] ZPT [2] Ours
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Pose Transfer on DeformingThings4D

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

Target Template Pose Example NJF [1] ZPT [2] Ours
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Pose Transfer on DeformingThings4D

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

Target Template Pose Example NJF [1] ZPT [2] Ours
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Pose Transfer on SMPL Human Body

Target Template Pose Example NJF [1] SPT [2] ZPT [3] Ours Ground Truth

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023
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Pose Transfer on SMPL Human Body

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

Target Template Pose Example NJF [1] SPT [2] ZPT [3] Ours Ground Truth
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Pose Transfer on SMPL Human Body

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

Target Template Pose Example NJF [1] SPT [2] ZPT [3] Ours Ground Truth
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Pose Transfer on Adobe Mixamo

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

NJF [1] SPT [2] ZPT [3] OursTarget Template Pose Example

Despite being trained only on SMPL meshes, our model generalizes well 

to unseen stylized characters from the Adobe Mixamo dataset.
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Pose Transfer on Adobe Mixamo

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

NJF [1] SPT [2] ZPT [3] OursTarget Template Pose Example

Despite being trained only on SMPL meshes, our model generalizes well 

to unseen stylized characters from the Adobe Mixamo dataset.
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Pose Transfer on Adobe Mixamo

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023

NJF [1] SPT [2] ZPT [3] OursTarget Template Pose Example

Despite being trained only on SMPL meshes, our model generalizes well 

to unseen stylized characters from the Adobe Mixamo dataset.



The superior performance of our method compared to the baselines is validated by 

quantitative metrics.

56

Quantitative Evaluation

DeformingThings4D-Animals SMPL Human Body

FID (↓)
(× 10−2)

KID (↓)
(× 10−2)

ResNet Acc. (↑) 
(%)

PMD (↓)
(× 10−3)

FID (↓)
(× 10−2)

KID (↓)
(× 10−2)

ResNet Acc. (↑)
(%)

NJF [1] 11.33 5.71 64.43 2.55 1.57 0.82 70.93

SPT [2] - - - 0.28 0.83 0.43 75.38

ZPT [3] 19.88 11.09 48.15 1.28 0.77 0.45 69.88

Ours 1.11 0.42 78.72 0.13 0.30 0.19 79.09

[1] Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al., ACM ToG 2022
[2] Skeleton-Free Pose Transfer for Stylized 3D Characters, Liao et al., ECCV 2022
[3] Zero-shot Pose Transfer for Unrigged Stylized 3D Characters, Wang et al., CVPR 2023



In this work, we present

• A novel keypoint-based pose representation for improved generalizability;

• A pose transfer framework predicting Jacobian Fields to preserve local details;

• Extensive evaluation using animals, humans, and stylized characters, showing the 

superior performance of the proposed representation and framework.

57

Summary
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Data-Driven Priors Without 3D Examples

Source Template Mesh Posed Examples of the Source Template Mesh

So far, we assumed that 3D meshes of a single deformable shape are 

available to learn a data-driven prior.



Data-Driven Priors Without 3D Examples
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Such exemplars are generally unavailable for arbitrary objects.

The BEHAVIOR Dataset of Objects,
Srivastava, CoRL 2021

https://stanfordvl.github.io/behavior/objects.html


Data-Driven Priors Without 3D Examples

60

Such exemplars are generally unavailable for arbitrary objects.

The BEHAVIOR Dataset of Objects,
Srivastava, CoRL 2021

Can we still utilize a data-driven prior
without any 3D shape examples?

https://stanfordvl.github.io/behavior/objects.html


Key Idea
Leverage a 2D diffusion model as a prior and

iteratively update the mesh Jacobian field via gradient descent.

SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis,  Podell et al., ICLR 2024 61

Pretrained Image Diffusion Model

Update Jacobian Field



Problem Definition
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The Computational Geometry Algorithms Library (CGAL)

Reposition a few handle vertices

Move others automatically!



Mesh Deformation
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෡𝐕 = min
𝐕

E(𝐕) 𝐒𝐕 = 𝐂s.t

𝐕 ∈ ℝV×3: Input Vertices
෡𝐕 ∈ ℝV×3: Deformed Vertices

𝐒 ∈ ℝV𝑐×V: Indicator Matrix
𝐂 ∈ ℝV𝑐×3: Constrained Positions



Mesh Deformation
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𝐕 ∈ ℝV×3: Input Vertices
෡𝐕 ∈ ℝV×3: Deformed Vertices

𝐒 ∈ ℝV𝑐×V: Indicator Matrix
𝐂 ∈ ℝV𝑐×3: Constrained Positions

෡𝐕 = min
𝐕

E(𝐕) 𝐒𝐕 = 𝐂s.t

Deformed Vertex Positions Deformation Energy Constraints on Fixed Vertices



Distilling Priors from Diffusion Models
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ℒ 𝜙, 𝐈 = ϵ𝜙 𝐈t − ϵ
2

Following DreamFusion [1], we use the training objective of diffusion 

models and optimize it via gradient descent to distill deformation 

priors.

[1] DreamFusion: Text-to-3D using 2D Diffusion, Poole et al., ICLR 2023

How can this loss function be applied to deform meshes?



Distilling Priors from Diffusion Models
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Diffusion models are trained to predict the noise to be removed

from a given image.

𝐈

ℒ 𝜙, 𝐈 = ϵ𝜙 𝐈t − ϵ
2



Distilling Priors from Diffusion Models
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Diffusion models are trained to predict the noise to be removed

from a given image.

𝐈

Add noise ϵ

𝐈𝑡

ℒ 𝜙, 𝐈 = ϵ𝜙 𝐈t − ϵ
2



Distilling Priors from Diffusion Models
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Diffusion models are trained to predict the noise to be removed

from a given image.

𝐈

Add noise ϵ

𝐈𝑡

ℒ 𝜙, 𝐈 = ϵ𝜙 𝐈t − ϵ
2

Predict noise ϵ𝜙



Distilling Priors from Diffusion Models
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Given a fully converged model 𝜙, we can instead compute the gradient 

with respect to the image 𝐈:

𝛁𝐈ℒ 𝜙, 𝐈 = (ϵ𝜙 𝐈t − ϵ)
𝜕𝐈𝑡

𝜕𝐈



Distilling Priors from Diffusion Models
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Given a fully converged model 𝜙, we can instead compute the gradient 

with respect to the image 𝐈:

𝐈

Add noise ϵ

𝐈𝑡

𝛁𝐈ℒ 𝜙, 𝐈 = (ϵ𝜙 𝐈t − ϵ)
𝜕𝐈𝑡

𝜕𝐈



Distilling Priors from Diffusion Models
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Given a fully converged model 𝜙, we can instead compute the gradient 

with respect to the image 𝐈:

𝐈

Add noise ϵ

𝐈𝑡

𝛁𝐈ℒ 𝜙, 𝐈 = (ϵ𝜙 𝐈t − ϵ)
𝜕𝐈𝑡

𝜕𝐈
Predicted noise ϵ𝜙



Distilling Priors from Diffusion Models
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Given a fully converged model 𝜙, we can instead compute the gradient 

with respect to the image 𝐈:

𝐈

Add noise ϵ

𝐈𝑡

𝛁𝐈ℒ 𝜙, 𝐈 = (ϵ𝜙 𝐈t − ϵ)
𝜕𝐈𝑡

𝜕𝐈
Predicted noise ϵ𝜙

ϵ𝜙 𝐈t − ϵ



Distilling Priors from Diffusion Models
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If the image 𝐈 was rendered from a mesh whose vertex coordinates are 

𝐕, we can apply the chain rule to obtain:

𝛁𝐕ℒ 𝜙, 𝐈 = (ϵ𝜙 𝐈t − ϵ)
𝜕𝐈𝑡

𝜕𝐈

𝜕𝐈

𝜕𝐕

Gradient Through 
the Renderer



Representing a Shape as a Jacobian Field
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Instead of optimizing 𝐕, we update the Jacobian field to deform the 

shape using the distilled prior.

• Local Detail Preservation

• Differentiability

• Prefactorization for Fast Forward Passes



Representing a Shape as a Jacobian Field
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During optimization, we compute 𝐕 from a given Jacobian field 𝐉 by 

solving the Poisson’s equation.

𝐉 = 𝛁𝐕

𝐕∗ = argmin
𝐕

∥ 𝐋𝐕 − 𝛁𝑇𝒜𝐉 ∥2

Mesh Laplacian (ℝ|𝐕| ×|𝐕|) Mass Matrix (ℝ3|𝐅|×3|𝐅|)



Representing a Shape as a Jacobian Field
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Then, we apply the chain rule again to compute the gradient with 

respect to the Jacobian field serving as the optimization variable:

𝛁𝐉ℒ 𝜙, 𝐈 = (ϵ𝜙 𝐈t − ϵ)
𝜕𝐈𝑡

𝜕𝐈

𝜕𝐈

𝜕𝐕

𝜕𝐕

𝜕𝐉

Gradient Through
the Poisson Solver



As-Plausible-As-Possible Framework
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Textured mesh ℳ
+ User input � , �

Jacobian field  �

Solve 

Poisson 

equation

Jacobian field  �

Solve 

Poisson 

equation

Stable Diffusion 

+ LoRA

“A photo of sks car”
Fine-tune LoRA

�

Update

�

Update

Deformed mesh

Rendered 

image  �

Intermediate mesh

�

Second StageFirst Stage

Preprocess

Main loop

for i = 1, … , N:
    𝐕∗ ← argmin

𝐕
∥ 𝐋𝐕 − 𝛁𝑇𝒜𝐉 ∥2 // Solve Poisson’s Equation

     𝐈 ← ℛ 𝐕∗                                   // Render Mesh

    𝐉 ← 𝐉 − 𝛁𝐉 𝐊ℎ𝐕∗ − 𝐓ℎ
2  // Move Handle Vertices

    𝐉 ← 𝐉 − 𝛁𝐉ℒ(𝐈, 𝛜𝝓)           // Follow Image Model Guidance

return 𝐉



As-Plausible-As-Possible Framework
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As-Plausible-As-Possible Framework
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return 𝐉
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Textured mesh ℳ
+ User input � , �

Jacobian field  �

Solve 

Poisson 

equation

Jacobian field  �

Solve 

Poisson 

equation

Stable Diffusion 

+ LoRA

“A photo of sks car”
Fine-tune LoRA

�

Update

�

Update

Deformed mesh

Rendered 

image  �

Intermediate mesh

�

Second StageFirst Stage

Preprocess

Main loop

for i = 1, … , N:
    𝐕∗ ← argmin

𝐕
∥ 𝐋𝐕 − 𝛁𝑇𝒜𝐉 ∥2 // Solve Poisson’s Equation

     𝐈 ← ℛ 𝐕∗                                   // Render Mesh

  𝐉 ← 𝐉 − 𝛁𝐉 𝐊ℎ𝐕∗ − 𝐓ℎ
2  // Move Handle Vertices

    𝐉 ← 𝐉 − 𝛁𝐉ℒ(𝐈, 𝛜𝝓)           // Follow Image Model Guidance

return 𝐉
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Experiment Setup

We compare our method against ARAP, the most widely used mesh 

deformation technique based on rigidity energy.

As-Rigid-As-Possible Surface Modeling,
Sorkine and Alexa, SGP 2007
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Experiment Setup

We built APAP-Bench, a benchmark consisting of textured 2D and 3D 

triangular meshes spanning various object categories:

• APAP-Bench 3D

• 10 textured 3D meshes from the ShapeNet dataset and LumaAI Genie.

• APAP-Bench 2D

• 40 textured 2D meshes spanning 20 (non)organic categories;

• Each category contains 1,000 images generated using Stable Diffusion-XL.
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Source ARAP [1] Ours

3D Mesh Deformation

[1] As-Rigid-As-Possible Surface Modeling, Sorkine and Alexa, SGP 2007 84
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Source ARAP [1] Ours

3D Mesh Deformation

[1] As-Rigid-As-Possible Surface Modeling, Sorkine and Alexa, SGP 2007 86
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2D Mesh Deformation
We leverage 2D meshes from APAP-Bench 2D to measure a perceptual 

metric and conduct a user study using the results.

• 𝑘-NN GIQA Score [1]

• The average of the inverse distances in InceptionNet feature space:

S(𝐱) =
1

𝐾
෍

𝑘=1

𝐾
1

𝐱 − 𝐱𝑘
2

• User Study

• Binary selection between ARAP and ours measuring preference.

[1] Generated Image Quality Assessment, Gu et al., ECCV 2020
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Our method surpasses the baseline in quantitative evaluations using 

a perceptual metric and user study.

2D Mesh Deformation

[1] As-Rigid-As-Possible Surface Modeling, Sorkine and Alexa, SGP 2007

Methods GIQA Score (× 10−2) (↑)

ARAP [1] 4.753

Ours 4.887

Methods Preference (%)

ARAP [1] 40.83

Ours 59.17

Perceptual Metric

User Study
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Our method better preserves the identity while the SotA baseline 

suffers from artifacts caused by editing latent encodings directly.

2D Image Editing
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Source

Drag

Diffusion

Ours



In this work, we present

• APAP, a novel mesh deformation technique using 2D diffusion priors;

• An iterative, gradient-based optimization algorithm for Jacobian fields;

• APAP-Bench, a benchmark setup for assessing visual plausibility in deformation;

• Experimental analysis, including user study for human-level assessment.
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Summary
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Conclusion

Pretrained Image Diffusion Model

Representation Learning for Non-Rigid Object Pose Transfer

Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors

We discussed how learned priors can be incorporated into mesh deformation:



Future Work
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Develop versatile editing techniques for other 3D representations, 

including implicit functions, point clouds, and Gaussian Splats.

A Laplacian for Nonmanifold Triangle Meshes,

Sharp and Crane, SGP 2020
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Discover and learn unknown physical models and parameters 

governing deformations using video generation models.

Mochi 1, GenmoStable Neo-Hookean Flesh Simulation,

Smith et al., ACM ToG 2018



Thank You
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