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Modern generative models, such as flow and diffusion models, learn to map 
from one distribution to another via iterative process.

Problem Definition

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial 



Problem Definition

Score Matching, NeurIPS 2019 (Oral) Noise Matching, NeurIPS 2020 Flow Matching, ICLR 2023 (Spotlight)



These approaches scale effectively to Internet-scale datasets and have 
demonstrated practical success in data domains such as images and videos.

Problem Definition

Black Forest Labs, FLUX.2
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Score Matching, NeurIPS 2019 (Oral) Noise Matching, NeurIPS 2020 Flow Matching, ICLR 2023 (Spotlight)

Requires     



In Bayesian inference and scientific applications, one is often interested in 
sampling from a Boltzmann distribution:





which is characterized by an energy function , with the normalizer  being 
intractable. Here, a lower energy indicates higher likelihood of a sample . 

ν(x) =
e−E(x)

Z
, Z = ∫𝒳

e−E(x)dx

E(x) Z
x
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Problem Definition

The Protein Folding Problem, Aryan Misra

https://medium.com/@aryanmisra/the-protein-folding-problem-dfa49030f775


Classical methods rely on Markov Chain Monte Carlo (MCMC) algorithms, 
which run a Markov chain whose stationary distribution is , but suffer from


• Slow mixing time; 

• Requiring many evaluations of , which is often expensive.

ν(x)

E(x)

Problem Definition

A visual schematic of MCMC algorithm

https://www.researchgate.net/figure/Markov-chain-Monte-Carlo-sampling-using-random-walk_fig1_331494053


Inspired by the recent success of diffusion models, Diffusion Samplers have 
gained attention, which consider stochastic differential equations (SDEs)





as a bridge that transports samples to the target distribution  at .

dXt = (f(Xt) + σtuθ
t (Xt)) dt + σtdWt s.t. X0 ∼ μ(X0), X1 ∼ ν(X1)

ν(x) t = 1

Problem Definition

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 (Oral)
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Problem Definition
Inspired by the recent success of diffusion models, Diffusion Samplers have 
gained attention, which consider stochastic differential equations (SDEs)





as a bridge that transports samples to the target distribution  at .


What would be a “scalable algorithm” for learning ?

dXt = (f(Xt) + σtuθ
t (Xt)) dt + σtdWt s.t. X0 ∼ μ(X0), X1 ∼ ν(X1)

ν(x) t = 1

uθ
t (Xt)



Recently, [Havens et al., ICML 2025] introduced Adjoint Sampling (AS), a class 
of diffusion samplers based on stochastic optimal control (SOC) theory 
relying only on on-policy samples.

Problem Definition

Havens et al., Adjoint Sampling, ICML 2025



However, Adjoint Matching heavily relies on the memoryless condition that 
restricts the source distribution  to be Dirac delta, precluding the use of 
common priors such as Gaussian.

μ(X0)

Problem Definition

Havens et al., Adjoint Sampling, ICML 2025



This work proposes Adjoint Schrödinger Bridge Sampler (ASBS), an 
extension of AS that eliminates the dependency on the memoryless condition.

Problem Definition

Liu et al., Adjoint Schrödinger Bridge Sampler (ASBS), NeurIPS 2025 (Oral)



Formally, ASBS casts learning  as a distributionally constrained optimization, 
known as the Schrödinger Bridge (SB) problem:





such that


.

uθ
t

min
u

DKL(pu∥pbase) = 𝔼X∼pu [∫
1

0

1
2

∥uθ
t (Xt)∥2dt],

dXt = [ft(Xt) + σtuθ
t (Xt)] dt + σtdWt, X0 ∼ μ(X0), X1 ∼ ν(X1)
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Adjoint Sampling

Formally, ASBS casts learning  as a distributionally constrained optimization, 
known as the Schrödinger Bridge (SB) problem:
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Specifically, this paper presents:


1. ASBS, an SB-based diffusion sampler capable of sampling target 
distributions using only unnormalized energy functions;


2. A theoretical framework that relaxes the memoryless constraint from AS, 
while retaining scalability of the matching-based algorithm;


3. Extensive comparisons against prior methods spanning Boltzmann 
distributions of classical energy fnctions, molecular energy potentials.

Key Contributions



Stochastic optimal control (SOC) spans general optimization problems over 
SDEs. Among them, our particular interest is to solve:





where  is an intermediate sample along a trajectory governed by an SDE:


min
u

= 𝔼X∼pu [∫
1

0

1
2

∥uθ
t (Xt)∥2dt + g(X1)],

Xt

dXt = [ft(Xt) + σtuθ
t (Xt)] dt + σtdWt, X0 ∼ μ(X0)
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Preliminaries: Stochastic Optimal Control

The distribution induced by the base SDE ( )u = 0

For this problem, the optimal distribution  induced by the optimal control 
velocity  is analytically known as:





where  is called the (intractable) initial value function, defined as:


.

p*
u*

p*(X0, X1) = pbase(X0, X1)e−g(X1)+V0(X0)

V0(X0)

V0(X0) = − log∫ p1|0(X1 |X0)e−g(X1)dX1
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Preliminaries: Stochastic Optimal Control

 is tilted by the terminal cost p* g( ⋅ )



However, marginalizing  does NOT yield the desired distribution


,


since the initial value function , serving as a bias, does NOT vanish during 
marginalization due to the correlation between  and .

p*(X0, X1)

p*(X1) ∝ pbase(X1)e−g(X1) = ν(X1)

V0(X0)
X0 X1

Preliminaries: Memoryless Condition



Preliminaries: Memoryless Condition
A common approach for mitigating this issue is to assume that the base process is 
memoryless by carefully choosing . This assumption gives us:


.


With this condition, marginalization recovers the target distribution :


,


where the last equality is obtained by setting .

( ft, σt, μ)

pbase(X0, X1) = pbase(X0)pbase(X1)

μ

p*(X1) = ∫ pbase(X0)pbase(X1)e−g(X1)+V0(X0)dX0 ∝ pbase(X1)e−g(X1) = ν(X1)

g(X1) = log
pbase(X1)

ν(X1)

Statistical Independence 
between (X0, X1)



For instance, the variance-preserving (VP) process requires a linear base drift , 
a noise schedule  that grows significantly with time, and a Gaussian prior .

ft
σt μ

Preliminaries: Memoryless Condition

Liu et al., Adjoint Schrödinger Bridge Sampler (ASBS), NeurIPS 2025 (Oral)



Preliminaries: Memoryless Condition
Likewise, AS [Havens et al., ICML 2025] limits itself to an SOC problem of form:


,


with ’s following a specific instance of the aforementioned general SDE:





min
u

𝔼X∼pu [∫
1

0

1
2

∥ut(Xt)∥2dt + log
pbase(X1)

ν(X1) ]
Xt

dXt = σtuθ
t (Xt)dt + σtdWt, X0 = 0

dXt = [ft(Xt) + σtuθ
t (Xt)] dt + σtdWt, X0 ∼ μ(X0)



Instead of SOC-based construction, this paper proposes to learn a diffusion 
sampler by solving the Schrödinger Bridge (SB) problem:





such that


.

min
u

DKL(pu∥pbase) = 𝔼X∼pu [∫
1

0

1
2

∥uθ
t (Xt)∥2dt],

dXt = [ft(Xt) + σtuθ
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Adjoint Schrödinger Bridge Sampler



Specifically, the optimal drift  satisfies the following optimality equations:





where


,


and  is the transition kernel of the base 
process.

u*t

u*t (x) = σt ∇log φt(x),

φt(x) = ∫ pbase
1|t (y |x)φ1(y)dy, φ0(x)φ̂0(x) = μ(x)

φ̂t(x) = ∫ pbase
t|0 (x |y)φ̂0(y)dy, φ1(x)φ̂1(x) = ν(x)

pbase
t|s (y |x) = pbase(Xt = y |Xs = x)

Adjoint Schrödinger Bridge Sampler

SB Potentials



Specifically, the optimal drift  satisfies the following optimality equations:





where


,


and  is the transition kernel of the base 
process.

u*t
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Adjoint Schrödinger Bridge Sampler

Intractable Integrals!



Rather than directly solving the numerically intractable SB problem, the authors 
show that its optimal solution  is the solution of another SOC problem:


,


such that


.

u*

min
u

𝔼X∼pu [∫
1

0

1
2

∥ut(Xt)∥2dt + log
φ̂(X1)
ν(X1) ]

dXt = [ft(Xt) + σtuθ
t (Xt)] dt + σtdWt, X0 ∼ μ(X0)
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Adjoint Schrödinger Bridge Sampler

AS

ASBS

 s.t.





 s.t.


.

min
u

𝔼X∼pu [∫
1

0

1
2

∥ut(Xt)∥2dt + log
pbase(X1)

ν(X1) ]
dXt = σtuθ

t (Xt)dt + σtdWt, X0 = 0

min
u

𝔼X∼pu [∫
1

0

1
2

∥ut(Xt)∥2dt + log
φ̂(X1)
ν(X1) ]

dXt = [ft(Xt) + σtuθ
t (Xt)] dt + σtdWt, X0 ∼ μ(X0)



Similar to the SOC considered in AS [Havens et al., ICML 2025], the optimal 
distribution  achievable by solving the problem is:


,


where “ ” is the initial value function in this case.

p*(X0, X1)

p*(X0, X1) = pbase(X0, X1)exp (−log
φ̂1(X1)
ν(X1)

− log φ0(X0))
−log φ0(X0)

Adjoint Schrödinger Bridge Sampler



Interestingly, by marginalizing this density over , one can show that


.


Leveraging the definitions of the SB potentials , , the expression further 
simplifies to:


.


That is, we now have a theoretical guarantee that solving this SOC will 
allow us to learn the unbiased target distribution .

X1

p*(X1) =
ν(X1)

φ̂1(X1) ∫ pbase(X0, X1)
1

φ0(X0)
dX0

φt φ̂t

p*(X1) =
ν(X1)

φ̂1(X1) ∫ pbase(X1 |X0) ̂φ0(X0)dX0 = ν(X1)

ν(X1)

Adjoint Schrödinger Bridge Sampler



How can we learn such ?u



The most naive approach is gradient-descent, which iteratively optimizes


,


with , using autodifferentiation to compute .

min
θ

ℒ(uθ
t ; X) = ∫

1

0 ( 1
2

∥uθ
t (Xt)∥2 + f(Xt)) dt + g(X1)

g(X1) = log
φ(X1)
ν(X1)

∂ℒ
∂θ

Recap: Adjoint Matching
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Backpropagating through “hundreds” of forward passes

Quickly runs out of memory



The adjoint method [Pontryagin et al., 1962] enables gradient computation with 
constant memory complexity, at the expense of increased computational cost.

Recap: Adjoint Matching

Chen et al., Neural Ordinary Differential Equations, NeurIPS 2018 (Best Paper Award)



The adjoint method [Pontryagin et al., 1962] enables gradient computation with 
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Forward simulation 
to compute g(X1)



The adjoint method [Pontryagin et al., 1962] enables gradient computation with 
constant memory complexity, at the expense of increased computational cost.

Recap: Adjoint Matching

Chen et al., Neural Ordinary Differential Equations, NeurIPS 2018 (Best Paper Award)

Backward simulation 
to compute adjoints a(t)



Crucially, [Domingo-Enrich et al., ICLR 2025] have proven that one can convert 
the naive SOC objective to the Adjoint Matching loss of form:





where , , 

and  is the path distribution induced by .

ℒAdj-Match(uθ
t ; X) =

1
2 ∫

1

0
∥uθ

t (Xt) + σ⊺
t ã(t; X)∥2dt, X ∼ pūθ

t

d
dt

ã(t; X) = − (ã(t; X)⊺ ∇Xt
f(Xt)) ã(1; X) = ∇X1

g(X1)

pūθ
t ūθ

t = stopgrad(uθ
t )

Recap: Adjoint Matching



Applying Adjoint Matching, our loss for solving the SB problem becomes: 





where the corrector gradient  is the solution of another problem:


.

𝔼pbase
t|0,1,pū

0,1 [∥ut(Xt) + σt (∇E + ∇log φ̂1)(X1)∥2], ū = stopgrad(u)

∇log φ̂1(x)

∇log φ̂1 = argmin
h

𝔼pu*
0,1 [∥h(X1) − ∇X1

log pbase(X1 |X0)∥2]
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The alternating optimization produces a sequence of updates





which can be interpreted as the coordinate descent between  and . 
Furthermore, the authors show that this optimization scheme converges to 
the true solution of the SB problem.

(u(0), h(0)) → ⋯ → (u(k), h(k))

u h

Adjoint Schrödinger Bridge Sampler



ASBS is evaluated on three classes of multi-particle energy functions.


Synthetic Energy Functions (Analytically Known Potentials) 

1. 2D 4-particle Double-Well potential (DW-4)


2. 1D 5-particle Many-Well potential (MW-5)


3. 3D 13-particle Lennard-Jones potential (LJ-13)


4. 3D 55-particle Lennard-Jones potential (LJ-55)

Experiments



ASBS is evaluated on three classes of multi-particle energy functions.


Alanine Diepeptide (Molecule with 22 atoms in 3D) 

1. Samples from the Boltzmann distribution of the molecules in a solvent;


2. Uses an energy function  from the OpenMM library to poulate  GT 
configurations.

E(x) 107

Experiments



ASBS is evaluated on three classes of multi-particle energy functions.


Amortized Conformer Generation 

1. Conformer: Molecule configurations at the local minima of the molecule’s 
potential energy surface;


2. Samples  where  is the molecular topology;


3. Training and test sets include 25K and 80 molecular toplogies, respectively;


4. Employs eSEN [Fu et al., 2025], a neural network approximating .

ν(x |g) ∝ e− 1
τ E(x|g) g

E(x |g)

Experiments



ASBS is compared against previous diffusion sampler, including


1. PIS [Zhang and Chen, ICLR 2022]


2. DDS [Vargas et al., ICLR 2023]


3. PDDS [Phillips et al., ICML 2024]


4. SCLD [Chen et al., ICLR 2025]


5. LV [Richter and Berner, ICLR 2024]


6. iDEM [Akhound-Sadegh et al., ICML 2024]


7. AS [Havens et al., ICML 2025]

Experiments



On synthetic energy functions, ASBS outperforms all previous diffusion samplers. 
( / : Wasserstein-2 distances w.r.t samples / energies)𝒲2 E( ⋅ )𝒲2

Experiments



Notably, on DW-4 and LJ-13 energies, energy histograms of ASBS samples 
closely resemble those of MCMC samples, treated as the ground truth.

Experiments

Energy histograms of DW-4 and LJ-13 comparing ASBS against MCMC (GT).



Furthermore, ASBS retains the scalability of AS [Havens et al., ICML 2025], 
requiring far less number of energy function evaluations.

Experiments

Complexity with respect to the model and energy NFE on LJ-13 potential.



On the task of sampling the Boltzmann distribution of the alanine dipeptide, ASBS 
samples achieves the lowest KL divergence and Wasserstein-2 distance.

Experiments

Quantitative comparisons on Alanine Dipeptide’s Boltzmann distribution. Ramachandran plots.



ASBS outperforms AS, which is restricted to Dirac-Delta priors, benefiting from 
the use of Gaussian and harmonic prior distributions.

Experiments
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To conclude, this paper:


1. introduces Adjoint Schrödinger Bridge Sampler (ASBS), a novel diffusion 
sampler that solves general SB problems given only energy functions;


2. provides a theoretical analysis of previous SOC-based approaches, a 
matching objective solving a SB problem, and proves its global convergence;


3. demonstrates the superior performance over baselines on various energy 
functions, including molecular conformer generation.

Conclusion
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