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Problem Definition

Modern generative models, such as flow and diffusion models, learn to map
from one distribution to another via iterative process.
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Abstract

We introduce a new generative model where samples are produced via Langevin
dynamics using gradients of the data distribution estimated with score matching.
Because gradients can be ill-defined and hard to estimate when the data resides on
low-dimensional manifolds, we perturb the data with different levels of Gaussian
noise, and jointly estimate the corresponding scores, ie., the vector ficlds of
gradients of the perturbed data distnibution for all noise levels. For sampling, we
propose an anncaled Langevin dynamics where we use gradients corresponding to
gradually decreasing noise levels as the sampling process gets closer to the data
manifold. Our framework allows flexible model architectures, requires no sampling
during training or the use of adversarial methods, and provides a learning objective

that can be used for principled model comparisons. Our models produce samples
comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new
state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate
that our models learn effective representations via image inpainting cxperiments.

1 Introduction

Generative models have many applications in machine learning. To list a few, they have been
used to generate high-fidelity images [26, 6], synthesize realistic speech and music fragments [58],
improve the performance of semi-supervised leamning [28, 10], detect adversarial examples and
other anomalous data [54], imitation learning [22], and explore promising states in reinforcement
learning [41]. Recent progress is mainly driven by two approaches: likelihood-based methods [17,
29, 11, 60] and generative adversanal networks (GAN [15]). The former uses log-likelihood (or a
suitable surrogate) as the training objective, while the latter uses adversarial training to minimize
f-divergences [40] or integral probability metrics [2, 55] between model and data distributions.

Although likelihood-based models and GANs have achieved great success, they have some intrinsic
limitations. For example, likelihood-based models either have to use specialized architectures to
build a normalized probability model (e.g., autoregressive models, low models), or use surrogate
losses (e.g., the evidence lower bound used in variational auto-encoders [29], contrastive divergence
in energy-based models [21]) for training. GANs avoid some of the limitations of likelihood-based
models, but their training can be unstable due to the adversanal training procedure. In addition, the
GAN objective is not suitable for evaluating and comparing different GAN models. While other
objectives exist for gencrative modeling, such as noise contrastive estimation [19] and minimum
probability flow [50], these methods typically only work well for low-dimensional data.

In this paper, we explore a new principle for generative modeling based on estimating and sampling
from the (Stein) score [33] of the logarithmic data density, which is the gradient of the log-density
function at the input data point. This is a vector ficld pointing in the direction where the log data
density grows the most. We use a neural network trained with score matching [24] to learn this
vector field from data. We then produce samples using Langevin dynamics, which approximately
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Problem Definition
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Abstract

We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic
models and denoising score matching with Langevin dynamics, and our models nat-
urally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR10 dataset,
we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
mentation is available at httpa://github.com/hojonathanho/diffusion.

1 Introduction

Deep generative models of all kinds have recently exhibited high quality samples in a wide variety
of data modalities. Generative adversarial networks (GANs), autoregressive models, flows, and
variational autoencoders (VAEs) have synthesized striking image and audio samples [14, 27, 3,
58, 38, 25, 10, 32, 44, 57, 26, 33, 45]. and there have been remarkable advances in energy-based
modeling and score matching that have produced images comparable to those of GANs [11, 55].

e el | TN
BT -2 R S
S L
EP B me Y&

o AT )
uﬂ”luﬂhﬁml
FAMSECi" | &l &

Figure 1: Generated samples on CelebA-HQ 256 x 256 (left) and unconditional CIFAR10 (right)
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ABSTRACT

We introduce a new paradigm for generative modeling built on Continuous
Normalizing Flows (CNFs), allowing us to train CNFs at unprecedented scale.
Specifically, we present the notion of Flow Matching (FM), a simulation-free
approach for training CNFs based on regressing vector fields of fixed conditional
probability paths. Flow Matching i1s compatible with a general family of Gaussian
probability paths for transforming between noise and data samples—which
subsumes existing diffusion paths as specific instances. Interestingly, we find
that employing FM with diffusion paths results in a more robust and stable
alternative for training diffusion models. Furthermore, Flow Matching opens
the door to training CNFs with other, non-diffusion probability paths. An
instance of particular interest is using Optimal Transport (OT) displacement
interpolation to define the conditional probability paths. These paths are more
cfficient than diffusion paths, provide faster training and sampling, and result in
better gencralization. Training CNFs using Flow Matching on ImageNet leads
to consistently better performance than alternative diffusion-based methods in
terms of both likelihood and sample quality, and allows fast and reliable sample
generation using off-the-shelf numerical ODE solvers.

1 INTRODUCTION

Deep generative models are a class of deep learning algorithms aimed at estimating and sampling
from an unknown data distribution. The recent influx of amazing advances in generative modeling,
e.g., for image generation Ramesh et al. (2022); Rombach et al. (2022), is mostly facilitated by
the scalable and relatively stable training of diffusion-based models Ho et al. (2020); Song et al.
(2020b). However, the restriction to simple diffusion processes leads to a rather confined space of
sampling probability paths, resulting in very long training times and the need to adopt specialized
methods (e.g., Song et al. (2020a); Zhang & Chen (2022)) for efficient sampling.

In this work we consider the general and deterministic framework of Continuous Normalizing
Flows (CNFs; Chen et al. (2018)). CNFs are capable of modeling arbitrary probablht) palh
and are 1n particular known to encompass the prob- [

ability paths modeled by diffusion processes (Song
et al.,, 2021). However, aside from diffusion that
can be trained efhciently via, e.g., denoising score
matching (Vincent, 2011), no scalable CNF train-
ing algorithms are known. Indeed, maximum like-
lihood training (e.g., Grathwohl et al. (2018)) re-
quire expensive numerical ODE simulations, while
existing simulation-free methods either involve in-
tractable integrals (Rozen et al., 2021) or biased gra-
dients (Ben-Hamu et al., 2022).

The goal of this work is to propose Flow Matching
(FM), an cfficient simulation-free approach to train-
ing CNF models, allowing the adoption of general
probability paths to supervise CNF training. Impor-
tantly, FM breaks the barriers for scalable CNF train- — -

ing beyond diffusion, and sidesteps the need to rea- Figure 1: Unconditional ImageNet-128 sam-
son about diffusion processes to directly work with  ples of a CNF trained using Flow Matching
probability paths. with Optimal Transport probability paths.

Flow Matching, ICLR 2023 (Spotlight)



Problem Definition

These approaches scale effectively to Internet-scale datasets and have
demonstrated practical success in data domains such as images and videos.

Black Forest Labs, FLUX.2



Requires samples from the target distribution!



Problem Definition

In Bayesian inference and scientific applications, one is often interested in
sampling from a Boltzmann distribution:

e —E(X)

V(x) = , /= J e FWdx
&

/

which is characterized by an energy function E(x), with the normalizer Z being

intractable. Here, a lower energy indicates higher likelihood of a sample x.



Problem Definition

The Protein Folding Problem, Aryan Misra



https://medium.com/@aryanmisra/the-protein-folding-problem-dfa49030f775

Problem Definition

Classical methods rely on Markov Chain Monte Carlo (MCMC) algorithms,
which run a Markov chain whose stationary distribution is v(x), but suffer from

e Slow mixing time;

» Requiring many evaluations of £(x), which is often expensive.
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A visual schematic of MCMC algorithm
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Problem Definition

Inspired by the recent success of diffusion models, Diffusion Samplers have
gained attention, which consider stochastic differential equations (SDEs)

— (f(Xt) + atuf(Xt)) dt + o dW, s.t. X, ~ u(Xy), X; ~ v(X,)
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Problem Definition

Inspired by the recent success of diffusion models, Diffusion Samplers have
gained attention, which consider stochastic differential equations (SDEs)

dX, = (f(X) + ou(X)) dt + 6dW, st. X, ~ u(Xy), X, ~ v(X,)
as a bridge that transports samples to the target distribution v(x) at r = 1.

Prescribed when defining a problem instance and remain fixed!



Problem Definition

Inspired by the recent success of diffusion models, Diffusion Samplers have
gained attention, which consider stochastic differential equations (SDEs)

dX, = (f(X) + oul(X)) dt + 6dW, st. X, ~ u(Xy), X, ~ v(X,)
as a bridge that transports samples to the target distribution v(x) at r = 1.

What would be a “scalable algorithm” for learning uf (X)?



Problem Definition

Recently, [Havens et al., ICML 2025] introduced Adjoint Sampling (AS), a class
of diffusion samplers based on stochastic optimal control (SOC) theory

relying only on on-policy samples.

. 1
ming ) Ex e, x,mp0 [311u(X0, 1) + 0 (6)Vg(X0)12] dt

Havens et al., Adjoint Sampling, ICML 2025



Problem Definition

However, Adjoint Matching heavily relies on the memoryless condition that
restricts the source distribution u(X,) to be Dirac delta, precluding the use of

common priors such as Gaussian.

S
min, [, IEXth:)lzisc,Xleiiz [ |w(Xy,t) + o (t)Vg(Xq)||?] dt
pl >

X¢ ~ py

Havens et al., Adjoint Sampling, ICML 2025



Problem Definition

This work proposes Adjoint Schrodinger Bridge Sampler (ASBS), an
extension of AS that eliminates the dependency on the memoryless condition.

time t

Memoryless SOC Non-Memoryless SOC ASBS (ours)

— Target v(x)

Liu et al., Adjoint Schrodinger Bridge Sampler (ASBS), NeurlPS 2025 (Oral)



Problem Definition

Formally, ASBS casts learning ut@ as a distributionally constrained optimization,
known as the Schrodinger Bridge (SB) problem:

: ull..base 1 1 0 2
min Dy, (p"|[p™"°) = = X~pt EH% (X)7dt |,
u 0

such that

dX, = |f(X) + oul(X)| dt + 6,dW,, X, ~ u(Xy), X; ~ v(X,).



Problem Definition

Formally, ASBS casts learning ut@ as a distributionally constrained optimization,
known as the Schrodinger Bridge (SB) problem:

: ull..base 1 1 0 2
min Dy, (p"|[p™"°) = = X~pt EH% (X)7dt |,
“ 0

such that

dx, = (X)) + ou/(X)| dt + o, dW,, X, ~ p(Xp), X; ~ v(X)).
0 o( )

Adjoint Sampling



Key Contributions

Specifically, this paper presents:

1. ASBS, an SB-based diffusion sampler capable of sampling target
distributions using only unnormalized energy functions;
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1. ASBS, an SB-based diffusion sampler capable of sampling target
distributions using only unnormalized energy functions;

2. A theoretical framework that relaxes the memoryless constraint from AS,
while retaining scalability of the matching-based algorithm;



Key Contributions

Specifically, this paper presents:

1. ASBS, an SB-based diffusion sampler capable of sampling target
distributions using only unnormalized energy functions;

2. A theoretical framework that relaxes the memoryless constraint from AS,
while retaining scalability of the matching-based algorithm;

3. Extensive comparisons against prior methods spanning Boltzmann
distributions of classical energy fnctions, molecular energy potentials.



Preliminaries: Stochastic Optimal Control

Stochastic optimal control (SOC) spans general optimization problems over
SDEs. Among them, our particular interest is to solve:

1
| 1
min = Ex.., “ ) P + g(Xo] |
U 0

where X, is an intermediate sample along a trajectory governed by an SDE:

dX, = [ft(Xt) + (ftuf(Xt)] dt + o dW,, X, ~ u(X,)



Preliminaries: Stochastic Optimal Control

For this problem, the optimal distribution p* induced by the optimal control

velocity u™ is analytically known as:
The distribution induced by the base SDE (1 = ()

P*(Xp, X)) = pP3SE(X,, X, )e 8K +Vo(Xo)

where V(X)) is called the (intractable) initial value function, defined as:

V(X)) = — log J'pl‘O(Xl \Xo)e_g(xl)Xm.



Preliminaries: Stochastic Optimal Control

For this problem, the optimal distribution p* induced by the optimal control

velocity u™ is analytically known as:

p*(XO, Xl) — p (XO’ Xl)e g( 1) 0( O)
where V(X)) is called the (intractable) initial value function, defined as:

V(X)) = — log J'p”()(Xl \Xo)e_g(Xl)Xm.

p* is tilted by the terminal cost g( - )



Preliminaries: Memoryless Condition

However, marginalizing p™* (X, X;) does NOT yield the desired distribution
p(X,) & pPASE(X e~ = (X)),

since the initial value function V,(X,)), serving as a bias, does NOT vanish during

marginalization due to the correlation between X, and X;.



Preliminaries: Memoryless Condition

A common approach for mitigating this issue is to assume that the base process is
memoryless by carefully choosing (f,, 6, ¢#). This assumption gives us:

I SINOY P
) |

. 'n
\",

Statistical Independence
between (X, X;)

PP (Ko, Xy) = pr X

A i it g ama = pm xd il . : - ? by 5 o 0 oy 5 o
_ 4 sams o & - > e & _fyr e . 57 e 2 ey _ z s SRS o= - o P4 B shay L,
peZ 2 = = 4 =51 > = = G g - < b3 =l 2

With this condition, marginalization recovers the target distribution pu:
P*(XQ — praSG(XO)pbaSG(Xl)e—g(X1)+VO(XO)dXO X pbaSG(Xl)e—g(Xl) — I/(Xl),

pbase(Xl)

where the last equality is obtained by setting g(X;) = log X
DA



Preliminaries: Memoryless Condition

For instance, the variance-preserving (VP) process requires a linear base drift f,,

a noise schedule o, that grows significantly with time, and a Gaussian prior p.

Memoryless SOC

Non-Memoryless SOC

— Target v(x)

_ g ame EQ O D 1 i)

ASBS (ours)

S

ource Xy ~ N(0, 1)

LI

~ -

Liu et al., Adjoint Schrodinger Bridge Sampler (ASBS), NeurlPS 2025 (Oral)



Preliminaries: Memoryless Condition
Likewise, AS [Havens et al., ICML 2025] limits itself to an SOC problem of form:

1 base
. 1 P (X1)
mink,_ . —Nu(X)||?dt + log ————= |,
Ny X~p [J'() 2” t( t)” g I/(Xl)

with X,’s following a specific instance of the aforementioned general SDE:

dX, = cu’(X)dt + cdW,, X, =0

dX, = [ft(Xt) + (ftuf(Xt)] dt + o dW,, X, ~ u(X,)



Adjoint Schrodinger Bridge Sampler

Instead of SOC-based construction, this paper proposes to learn a diffusion
sampler by solving the Schrodinger Bridge (SB) problem:

' ull..base 1 1 0 2
min Dy, (p"[|p”) = —X~pt EH% (X)||7dt |,
“ 0

such that

dX, = |f(X) + oul(X)| dt + 6,dW,, X, ~ u(Xy), X; ~ v(X,).



Adjoint Schrodinger Bridge Sampler

Specifically, the optimal drift ut* satisfies the following optimality equations:

u*(x) = o,Vlog ¢,(x),

where SB otals
0= [PE%e0 1 09:0)dy,  po(D)P) = p(x)
D= [Pi6 e )Py, 1)) (x) = 1)
and p::‘)sase(y | x) = pbase(Xt = y| X, = x) is the transition kernel of the base

Drocess.



Adjoint Schrodinger Bridge Sampler

Specifically, the optimal drift ut* satisfies the following optimality equations:

u*(x) = o,Vlog ¢,(x),

where
e
P (x) ' fpﬂ?se(y\x)(pl(y)dy Cﬂo(x)@o(x) = pu(x)
) = PRI NPMAY] 910 (x) = 1)
and p::‘)sase(y | x) = pbase(Xt = y| X, = x) is the transition kernel of the base

Drocess.



Adjoint Schrodinger Bridge Sampler

Rather than directly solving the numerically intractable SB problem, the authors
show that its optimal solution ©* is the solution of another SOC problem:

1 A
1 X
[ DGO 1de + 10g 280 |
2 I/(Xl)

Uu

0

such that

dX, = |[(X) + oul(X)| dt + 6,dW,, Xy ~ u(Xy).



Adjoint Schrodinger Bridge Sampler

pbase(Xl) ]
S.1.

V(X))

u

1
, 1
mn Ey._,u [J EHMz(Xt)szf + log
0
AS

dX, = cu’(X)dt + cdW,, Xy =0

V(X))

Uu

1 .
| X
minky, . [J EHut(Xt)szt+log a 1)] s.t.
0

ASBS

dX, = |f(X) + oul(X)| dt + 6,dW,, X, ~ u(Xy).



Adjoint Schrodinger Bridge Sampler

Similar to the SOC considered in AS [Havens et al., ICML 2025], the optimal
distribution p*(X,), X;) achievable by solving the problem is:

@1(X))
V(X))

p*(Xy, Xp) = pbase(XO, X1)exp (—102% — log C”o(Xo)) ,

where “—log ¢ (X,)” is the initial value function in this case.



Adjoint Schrodinger Bridge Sampler

Interestingly, by marginalizing this density over X, one can show that

v (Xl)
»1(X1) Po(Xp)

Leveraging the definitions of the SB potentials ¢,, ¢,, the expression further
simplifies to:

[ pP3Se(X, X)) dX,.

p*(X)) =

V(X))
@1(X1)

That is, we now have a theoretical guarantee that solving this SOC wiili
allow us to learn the unbiased target distribution /(X).

pr(X)) = J'pbase(Xl | X0)9o(Xp)d X, = v(X)).



How can we learn such u?




Recap: Adjoint Matching

The most naive approach is gradient-descent, which iteratively optimizes

1
mgin Z(u; X) = [ (%Huf(Xt)Hz +f(Xt)> dt + g(Xy),
0

pX) . - 0Z
, using autodifferentiation to compute ——

ith 2(X,) = 1o .
with (%) =log /3 Y.




Recap: Adjoint Matching

The most naive approach is gradient-descent, which iteratively optimizes

B L L PO NS I 25 <2 QO IR B W PRI N T VI D O R T A T 57 ST P B RO S X TR VEE QKN ST B T P e e g P4

. pXy) . - 07
with g(X;) = log , using autodifferentiation to compute —.
V(X)) 00

. |
mln g(ufa X) = J (—Hqu(Xf)Hz +f(Xt)> dt + g(Xl)

0

Backpropagating through “hundreds” of forward passes

Quickly runs out of memory




Recap: Adjoint Matching

The adjoint method [Pontryagin et al., 1962] enables gradient computation with
constant memory complexity, at the expense of increased computational cost.
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Chen et al., Neural Ordinary Differential Equations, NeurlPS 2018 (Best Paper Award)




Recap: Adjoint Matching

The adjoint method [Pontryagin et al., 1962] enables gradient computation with
constant memory complexity, at the expense of increased computational cost.

Forward simulation
to compute g(X,)
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Chen et al., Neural Ordinary Differential Equations, NeurlPS 2018 (Best Paper Award)




Recap: Adjoint Matching

The adjoint method [Pontryagin et al., 1962] enables gradient computation with
constant memory complexity, at the expense of increased computational cost.
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Chen et al., Neural Ordinary Differential Equations, NeurlPS 2018 (Best Paper Award)



Recap: Adjoint Matching

Crucially, [Domingo-Enrich et al., ICLR 2025] have proven that one can convert
the naive SOC objective to the Adjoint Matching loss of form:

1 (! ] _
% aci Matcn(@sX) = 3 | 1f(X) + olaXdr. X ~ p
0

where %a(z; X) = — (a(z; X)TVy f(Xt)), a(1;X) = Vy g(X).

and pﬂf@ IS the path distribution induced by ﬁf = stopgrad(ute).



Adjoint Schrodinger Bridge Sampler

Applying Adjoint Matching, our loss for solving the SB problem becomes:

= phase pit [H%(Xt) + o, ( VE + Vlog @1)(X1)||2] , 1 = stopgrad(u)

bas
pth,l

where the corrector gradient V1og ¢(x) is the solution of another problem:

Viog ¢, = argminE,. | [(X,) = Vy log p"<(X, | Xp)|12|
mink,,



Adjoint Schrodinger Bridge Sampler

Applylng Adjomt I\/Iatchlng, our Ioss for solvmg the SB problem becomes

= phase [H%(Xt) + o, ( VE + Vlog (pl)(Xl)Hz] stopgrad(u)

where the corrector gradient Vlog (pl(X) is the solution of another problem:

=i [IACG) = Vg log pPe(x, | X))




Adjoint Schrodinger Bridge Sampler

Applying Adjomt I\/Iatchlng, our loss for solving the SB problem becomes:

. uut<Xt>+ o, (VE+ Viog§,)X)I|, & = stopgrad(u)

where the corrector gradlent Vl1og ¢(x) is the solution of another problem

' VIOg @1 — argmin [Hh(Xl) — VXllngbase(Xl ‘XO)HZI ]



Adjoint Schrodinger Bridge Sampler

Applying Adjoint Matching, our loss for solving the SB problem becomes:

where the corrector gradient V1og ¢(x) is the solution of another problem:

Vlog ¢, = argmin

h

——

Carw-"

N ®

N P

~phetrh [Hut(Xt) +0,(VE + Vlog c7>1)(X1)||2], it = stopgrad(u)

=i [IACG) = Vg log pPe(x, | X))

e P

| Algorithm 1 Adjoint Schrodinger Bridge Sampler (ASBS)

Require: Sample-able source X ~ u, differentiable energy E(x), parametrized ug(¢, z) and hy(z)

b !

2
‘; 3
4:
i 5

. Initialize h((bo) =0

. end for

. for stage kin1,2,... do

Update drift uék) by solving (14)
Update corrector hfpk) by solving (15)

e’

_ G s



Adjoint Schrodinger Bridge Sampler

The alternating optimization produces a sequence of updates

(D, hOy = oo 5 (W, )y

which can be interpreted as the coordinate descent between u and /.

Furthermore, the authors show that this optimization scheme converges to
the true solution of the SB problem.



Experiments

ASBS is evaluated on three classes of multi-particle energy functions.
Synthetic Energy Functions (Analytically Known Potentials)

1. 2D 4-particle Double-Well potential (DW-4)

2. 1D 5-particle Many-Well potential (MW-5)

3. 3D 13-particle Lennard-Jones potential (LJ-13)

4. 3D 55-particle Lennard-Jones potential (LJ-55)



Experiments

ASBS is evaluated on three classes of multi-particle energy functions.
Alanine Diepeptide (Molecule with 22 atoms in 3D)

1. Samples from the Boltzmann distribution of the molecules in a solvent;

2. Uses an energy function E(x) from the OpenMM library to poulate 10’ GT
configurations.



Experiments

ASBS is evaluated on three classes of multi-particle energy functions.

Amortized Conformer Generation

1. Conformer: Molecule configurations at the local minima of the molecule’s
potential energy surface;

2. Samples v(x| g2) e~ 7EX18) where g is the molecular topology;

3. Training and test sets include 25K and 80 molecular toplogies, respectively;

4. Employs eSEN [Fu et al., 2025], a neural network approximating E(x | 2).



Experiments

ASBS is compared against previous diffusion sampler, including

1. PIS [Zhang and Chen, ICLR 2022]
DDS [Vargas et al., ICLR 2023}
PDDS [Phillips et al., ICML 2024]
SCLD [Chen et al., ICLR 2025]

LV [Richter and Berner, ICLR 2024]

o o > b

IDEM [Akhound-Sadegh et al., ICML 2024]
/. AS [Havens et al., ICML 2025]



Experiments

On synthetic energy functions, ASBS outperforms all previous diffusion samplers.
(W 5/E( - )W ,: Wasserstein-2 distances w.r.t samples / energies)

MW-5 (d=5) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)

Method Sinkhorn | Wol E()We| Wol| E()W2|l W]l  E() Wyl
PDDS (Phillips et al., 2024) 0.92:008  0.08:02s 4.661057 56.01:10.50

SCLD (Chen et al., 2025) 0.44:0.06 1.30:064  0.40:010  2.931010 27.98: 126

PIS (Zhang and Chen, 2022) 0.65:0.25 0.68:02¢  0.605:025  1.931007 18.02+ 112 4.79:045 228.70+131 .27
DDS (vargas et al., 2023) 0.63:0. 0.92:0:0 0901057  1.99:0 24.61+ 5900 4.60:000 173.09+ 150
LV-PIS (richter and Berner, 2024) 1.04 0 29 1.89 10 49

IDEM (Akhound-sadegh et al., 2024) 0.70:006  0.55:014 1.61:001 30.78 12446 4.69:152  93.593+ 164
AS (Havens et al., 2025) 0.32:0.06 0.62+0.06 0.5 1012 1.67 0.0 2.40+ 4.04 1005 30.83+ «190
ASBS (Ours) 0.15:00 0.43+005 0.20+0.11  1.894003  1.99+ ; 4.00+0.03 28.10+ s.15




Experiments

Notably, on DW-4 and LJ-13 energies, energy histograms of ASBS samples
closely resemble those of MCMC samples, treated as the ground truth.

DW-4 L)-13
> .3
% ASBS (ours) | (g - T
qc) Ground Truth
0 .2
- 04 -
Q
N
— .1
© 02 -
-
e
@) |
< .O r T T - B E— .OO o T T 1 —
-26 22 -18 -14 -60 -45 -30 -15
Energy E(x) nergy E(x)

Energy histograms of DW-4 and LJ-13 comparing ASBS against MCMC (GT).




Experiments

Furthermore, ASBS retains the scalability of AS [Havens et al., ICML 2025],
requiring far less number of energy function evaluations.

Complexity per Grad. Update

% 103 - N

S PIS, DDS

S 102 -

L]

L

= |

O 10! 3

o 7" 3 xASE5 iDEM
= : 4
Z 10°

10~3 10=% 10~%* 10° 10' 10° 10°
Average NFE on Energy

Complexity with respect to the model and energy NFE on LJ-13 potential.



Experiments

On the task of sampling the Boltzmann distribution of the alanine dipeptide, ASBS

samples achieves the lowest KL divergence and Wasserstein-2 distance.

without relaxation

with relaxation

Ground Truth

SPICE GEOM-DRUGS SPICE GEOM-DRUGS
Method Coverage T AMR | Coveraget AMR | Coveraget AMR | Coveraget AMR |
RDKit ETKDG (Riniker and Landrum, 2015) 56.94i35.82 1.04i().52 50.81i34‘69 1.15i(]‘61 70.21i31.7(] O.79i()‘/1/1 62.55i31‘67 0.93i(].53
AS (Havens et al., 2025) 56.75 13515 0.96+0.26 36.23 13342 1.20+0.43 82.41: 2585 0.68+0.28 64.26 3457 0.89+0.45
ASBS W/ Gaussian pI‘iOI‘ (Ours) 73.04 5195 0.83+0.24 50.23 +35.08 1.05+0.43 88.26+20.57 0.60+0.24 72.32+29.68 0.77+0.35
ASBS W/ harmonic prior (OUI’S) 74.05+31.61 0.82+0.23 93.14+35.69 1.03+0.42 88.71+1s.63 0.59+0.24 12.77 12994 0.78+0.35
AS +RDK1t Warmup (Havens et al., 2025) 722]. +30.22 O.84i0.24 52.19i35.2() 1.02i0.34 87.84&19.20 0.60i0.23 73.88i28.63 O.76i0.34
ASBS +RDKit warmup (Ours) 77.84 125 37 0.79+0.23 57.19+35.14 0.980.40 88.08 +15.54 0.58+0.24 73.18:30.00 0.76+0.57

Quantitative comparisons on Alanine Dipeptide’s Boltzmann distribution.

Ramachandran plots.




Experiments

ASBS outperforms AS, which is restricted to Dirac-Delta priors, benefiting from
the use of Gaussian and harmonic prior distributions.

without relaxation with relaxation
SPICE GEOM-DRUGS SPICE GEOM-DRUGS
Method Coverage T AMR | Coverage T AMR | Coveraget AMR | Coverage?T AMR |
RDKlt ETKDG (Riniker and Landrum, 2015) 5694 +35.82 104 +0.52 5081 34.69 ].].5 +0.61 7021 +31.70 079 +0.44 6255 +31.67 093 +0.53
AS (Havens et al., 2025) 56.75 13815 0.96-+0.26 36.23 33 42 1.20+0.45 82.41 25 55 0.68+0.25 04.206+34.57 0.89+0.45
ASBS W/ Ga,ussia,n pI'iOI' (OUI'S) 73.04 31 05 0.83+0.2 50.23 +35.08 1.05+0.43 88.26+20.57 0.60+0.24 12.32+29.68 0.77+0.35
ASBS W/ harmonic pI‘iOI’ (OUI'S) 74.05+31.61 0.8210.23 93.14 +35.69 1.03+0.42 88.71+ 1563 0.59 1024 12.77 +29.94 0.78 1035

AS —|-RDK1t warimup (Havens et al., 2025) 72.21 13022 0.84 0.2 952.19+ 3520 1.02+0.34 87.84+19.20 0.60+0.23 73.88 12563 0.76+0.34
ASBS —|—RDK1t warimup (OUI'S) 77.84 155 37 0.79+0.23 D7.19+35.14 0.98+0.40 88.08 1554 0.58 1024 73.18 3000 0.76 1037
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Conclusion

To conclude, this paper:

1. introduces Adjoint Schrodinger Bridge Sampler (ASBS), a novel diffusion
sampler that solves general SB problems given only energy functions;

2. provides a theoretical analysis of previous SOC-based approaches, a
matching objective solving a SB problem, and proves its global convergence;

3. demonstrates the superior performance over baselines on various energy
functions, including molecular conformer generation.
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