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Motivation

1

Diffusion models have become the de facto standard for generative modeling in 

continuous domains, spanning images, videos, etc.

Stable Diffusion 2, Stability AI
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https://arxiv.org/abs/2304.10320
https://stability.ai/news/stable-diffusion-v2-release


Motivation

2

In recent years, efforts have been made to adapt the success of diffusion models to 

discrete data, which is essential for domains such as text, graphs, and molecules.
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MultiFlow, Campbell et al., ICML 2024

MultiFlow, Campbell et al., ICML 2024

https://arxiv.org/abs/2304.10320
https://www.inceptionlabs.ai/
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https://arxiv.org/abs/2402.04997
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https://arxiv.org/abs/2402.04997


Motivation

3

In contrast to their continuous counterparts, many widely used techniques—such as 

distillation for faster sampling—remain underexplored in discrete diffusion.

Consistency Models, Song et al., ICML 2023

Consistency Models, Song et al., ICML 2023
EDM, Karras et al., NeurIPS 2022
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https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364
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Motivation

4

In science and mathematics, surprising dualities have often provided deeper insights into 

complex phenomena, leading to breakthroughs in addressing challenging problems.

Orbitals as Solutions of Schrödinger's equation

Orbitals as Solutions of Schrödinger's equation
Visual Schematic of Material Point Method (MPM)

Visual Schematic of Material Point Method (MPM)

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://www.geoelements.org/research/mpm/


Does a fundamental duality exist between 

discrete and continuous diffusion?

5



Key Findings

6

This paper demonstrates that Gaussian diffusion in the Euclidean space has a discrete 

counterpart in the probability simplex, whose stationary distribution is uniform. 

A visual schematic of the Diffusion Duality.

A visual schematic of the Diffusion Duality.

https://arxiv.org/abs/2304.10320


Key Findings

7

Leveraging this duality, the authors demonstrate that:

1. The training of uniform-state diffusion models (USDMs) can be stabilized through 

curriculum learning, leading to improved performance;



Key Findings

8

Leveraging this duality, the authors demonstrate that:

1. The training of uniform-state diffusion models (USDMs) can be stabilized through 

curriculum learning, leading to improved performance;

2. Discrete Consistency Distillation becomes feasible by emulating PF-ODE in the 

continuous domain, a formulation that is non-trivial to define for discrete diffusion.



Background: Discrete Diffusion Models

9

Let

- 𝐱 ∈ {0, 1}K: An instance of a scalar random variable that can take K values;

- 𝒱: A set of one-hot vectors 𝐱 called “dictionary”;

- Cat(⋅; 𝛑): A categorical distribution over K classes with a probability mass function 𝛑;

- 𝟏 = {1}K: A vector of ones;

- ⟨𝐚, 𝐛⟩: Dot product between two vectors 𝐚 and 𝐛;

- 𝐚 ⊙ 𝐛: Hadamard (Element-wise) product between two vectors 𝐚 and 𝐛;

- 𝐱𝑙
𝑙=1
𝐿 ∈ 𝒱𝐿: A sequence of length 𝐿.



Background: Discrete Diffusion Models

10

Consider a clean token 𝐱 ∈ 𝒱 drawn from the data distribution 𝑞data.

The forward process smoothly transforms the token toward a prior distribution Cat(⋅; 𝛑):

𝑞𝑡 ⋅ 𝐱; 𝛼𝑡 = Cat(⋅; 𝛼𝑡𝐱 + 1 − 𝛼𝑡 𝛑),

where 𝛼𝑡 ∈ [0, 1] is a strictly decreasing function with 𝛼0 ≈ 1 and 𝛼1 ≈ 0.



Background: Discrete Diffusion Models

11

The evolution of marginal 𝑞𝑡  is described by a linear ODE

d

d𝑡
𝑞𝑡 = 𝑄𝑡𝑞𝑡,

with 𝑄𝑡 ∈ ℝK×K denoting the state transition matrix.



Background: Discrete Diffusion Models
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The matrix 𝑄𝑡  varies depending on the stationary distribution Cat(⋅; 𝛑), toward which the 

diffusion process converges. Two common choices are:

1. Uniform: 𝛑 = 1/K

2. Absorbing (Mask): 𝛑 = 𝐦

where 𝐦 ∈ 𝒱 is a special mask token appended to the dictionary 𝒱.



Background: Discrete Diffusion Models

13

When 𝛑 = 𝟏/K, the model is called  Uniform-State Diffusion Model (USDM), and its state 

transition matrix 𝑄𝑡  is given by:

𝑄𝑡 =
𝛼𝑡

′

K𝛼𝑡
[𝟏𝟏T − K𝐈],

where 𝛼𝑡
′  is the time derivative of 𝛼𝑡.



Background: Discrete Diffusion Models
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Its time-reversal, which is the core of generative modeling, is given as:

𝑞𝑠|𝑡 ⋅ 𝐳𝑡 , 𝐱 = Cat(⋅;
K 𝛼𝑡𝐳𝑡 ⊙ 𝐱 + 𝛼𝑡|𝑠 − 𝛼𝑡 𝐳𝑡

K𝛼𝑡 𝐳𝑡 , 𝐱 + 1 − 𝛼𝑡
+

𝛼𝑠 − 𝛼𝑡 𝐱 + 1 − 𝛼𝑡|𝑠 1 − 𝛼𝑠 𝟏/K

K𝛼𝑡 𝐳𝑡 , 𝐱 + 1 − 𝛼𝑡
)

where 𝛼𝑡|s =
𝛼𝑡

𝛼𝑠
.

Since 𝐱 is unavailable during inference, it is predicted by a neural network

𝐱𝜃:  𝒱 × 0,1 → ΔK,

yielding an approximate reverse posterior

𝑝𝑠|𝑡
𝜃 ⋅ 𝐳𝑡 = 𝑞𝑠|𝑡 ⋅ 𝒛𝑡 , 𝐱 = 𝐱𝜃(𝐳𝑡 , 𝑡) .



Background: Discrete Diffusion Models
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The parameters 𝜃  are updated by optimizing the negative evidence lower bound (NELBO):

NELBO 𝑞, 𝑝𝜃; 𝐱 =  𝔼𝑡∼𝒰 0,1 ,𝑞𝑡 𝐳𝑡 𝐱; 𝛼𝑡
𝑓(𝐳𝑡 , 𝐱𝜃 𝐳𝑡 , 𝑡 , 𝛼𝑡; 𝐱),

where 𝑓 is defined as

𝑓 𝐳𝑡 , 𝐱𝜃 𝐳𝑡 , 𝑡 , 𝛼𝑡; 𝐱 = −
𝛼𝑡

′

K𝛼𝑡

K

ത𝐱𝑖
−

K

ത𝐱𝜃 𝑖
− ෍

𝑗

ഥ𝒙𝑗

ത𝐱𝑖
log

ത𝐱𝜃 𝑖 ⋅ ത𝐱𝑗

ത𝐱𝜃 𝑗 ⋅ ത𝐱𝑖
,

with ത𝐱 = K 𝛼𝑡𝐱 + 1 − 𝛼𝑡 𝟏 and ത𝐱𝜃 = K 𝛼𝑡𝐱𝜃(𝒛𝑡 , 𝑡) + 1 − 𝛼𝑡 𝟏.



Background: Discrete Diffusion Models
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After training the model, new samples are generated by first sampling from the prior

𝐳𝑡=1 ∼
𝟏

K

and iteratively performing the ancestral sampling

𝐳𝑠 ∼ 𝑝𝑠|𝑡
𝜃 (⋅ |𝐳𝑡).

D3PM, Austin et al., NeurIPS 2021

D3PM, Austin et al., NeurIPS 2021

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006


Background: Gaussian Diffusion Models

17

In continuous domains, Gaussian diffusion maps a data distribution 𝑞data to an easy-to-

sample prior distribution, typically a unit Gaussian 𝒩 0, 𝐈K , along marginals

෤𝑞𝑡 ⋅ 𝐱; ෤𝛼𝑡 = 𝒩( ෤𝛼𝑡𝐱, 1 − ෤𝛼𝑡
2 𝐈K),

where the diffusion parameter ෤𝛼𝑡 ∈ 0,1  is a monotonically decreasing function.



Background: Gaussian Diffusion Models

18

When ෤𝛼𝑡=0 = 1 and ෤𝛼𝑡=1 = 0, the NELBO for learning the process is given by:

NELO ෤𝑞, 𝑝𝜃 , 𝐱 = −𝔼𝑡∼𝒰 0,1 , ෤𝑞𝑡 𝐰𝑡 𝐱; ෤𝛼𝑡
𝜐′(𝑡)‖ ‖𝐱 − 𝐱𝜃 𝐰𝑡 , 𝑡 2

2

where 𝜐′(𝑡) is the time derivative of the signal-to-noise ratio 𝜐 𝑡 = ෤𝛼𝑡
2/(1 − ෤𝛼𝑡

2).



Background: Consistency Distillation

19

Consistency Distillation [Song et al., 2023] is a technique for distilling existing diffusion 

models for few-step generation.

Consistency Models, Song et al., ICML 2023

Consistency Models, Song et al., ICML 2023

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469


Background: Consistency Distillation

20

For distillation, there must exist a deterministic PF-ODE corresponding to 𝑝𝑡:

𝑑𝐱𝑡 = 𝜇 𝐱𝑡 , 𝑡 −
1

2
𝜎 𝑡 2∇ log 𝑝𝑡 𝐱𝑡 𝑑𝑡.

With it, a student model is optimized by

1. Perturbing a data sample 𝐱 via forward process 𝐰𝑡 ∼ ෤𝑞𝑡 ⋅ 𝐱 ;

2. Solving one PF-ODE step using the teacher 𝐱𝜃−, obtaining 𝐰𝑠  at 𝑠 < 𝑡;

3. Minimize the gap between clean sample estimates from the teacher and student:

ℒ 𝜃, 𝜃− = 𝜆 𝑡 𝑑 𝐱𝜃 𝐰𝑡 , 𝑡 , 𝐱𝜃− 𝐰𝑠 , 𝑠

4. Repeat the above step until convergence.



The Diffusion Duality

21

Our main goal is to bridge discrete-state and continuous-state diffusion, enabling the 

transfer of techniques from the latter to improve the former.
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Our main goal is to bridge discrete-state and continuous-state diffusion, enabling the 

transfer of techniques from the latter to improve the former.

Interestingly, a Gaussian latent 𝐰𝑡  can be mapped to a discrete one-hot vector 𝐳𝑡  by

𝒛𝑡 = argmax 𝐰𝑡



The Diffusion Duality

23

Our main goal is to bridge discrete-state and continuous-state diffusion, enabling the 

transfer of techniques from the latter to improve the former.

Interestingly, a Gaussian latent 𝐰𝑡  can be mapped to a discrete one-hot vector 𝐳𝑡  by

𝒛𝑡 = argmax 𝐰𝑡

However, we must show that the marginal distribution 𝑞𝑡  of such 𝒛𝑡’s satisfies the ODE:

d

d𝑡
𝑞𝑡 = 𝑄𝑡𝑞𝑡



The Diffusion Duality

24

As in continuous domains, we can diffuse the discrete token 𝐱 ∈ 𝒱 by directly applying the 

forward process 𝐰𝑡 ∼ ෤𝑞𝑡(⋅ |𝐱;  ෤𝛼𝑡).

We define the operation argmax: ℝK → 𝒱 that maps a continuous vector 𝐰𝑡 ∈ ℝK to the 

one-hot vector corresponding to the index of its largest entry

argmax 𝐰𝑡 = argmax𝐳∈𝒱𝐳T𝐰𝑡.



The Diffusion Duality

25

After doing a bit of math, we can show that

𝐳𝑡 ∼ 𝑃𝑡 ⋅ 𝐱; 𝒯 ෤𝛼𝑡 = Cat(⋅; 𝒯 ෤𝛼𝑡 𝐱 + 1 − 𝒯 ෤𝛼𝑡
𝟏

K
),

where the function 𝒯: 0,1 × 0,1  is the Diffusion Transformation Operator:

𝒯 ෤𝛼𝑡 =
K

K−1
׬]

−∞

∞
𝜙 𝑧 −

෥𝛼𝑡

1−෥𝛼𝑡
2

ΦK−1 z dz −
1

K
],

where

- 𝜙 z = exp(−
z2

2
)/ 2𝜋: PDF of the standard Normal distribution;

- Φ z = ׬
−∞

z
exp −

𝑡2

2
𝑑z/ 2𝜋: CDF of the standard Normal distribution.



The Diffusion Duality
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Furthermore, it is proven that the discrete marginal 𝑃𝑡  satisfies the linear ODE:

𝑑

𝑑𝑡
𝑃𝑡 = −

𝒯′ ෤𝛼𝑡

K𝒯 ෤𝛼𝑡
𝟏𝟏T − K𝐈 𝑃𝑡 ,

where 𝒯′ is the time derivative of 𝒯.

If we define the matrix multiplied to 𝑃𝑡  on the RHS as 𝑄𝑡, then the equation is identical to 

the linear ODE of the uniform-state discrete diffusion processes.



The Diffusion Duality

27

So far, we have shown that

“The argmax  operation transforms Gaussian diffusion into uniform-state discrete diffusion, 

with the diffusion parameters ෤𝛼𝑡  (Gaussian) and 𝒯 ෤𝛼𝑡  (Discrete) related by

𝒯 ෤𝛼𝑡 =
K

K−1
׬]

−∞

∞
𝜙 𝑧 −

෥𝛼𝑡

1−෥𝛼𝑡
2

ΦK−1 z dz −
1

K
]”



More directly, between two marginals 𝑞𝑡  and ෤𝑞𝑡, the following equation holds:

𝑞𝑡 𝐳𝑡 𝐱; 𝒯 ෤𝛼𝑡 = argmax ⋆ ෤𝑞𝑡(𝐰𝑡|𝐱; ෤𝛼𝑡)

Where the operator ⋆ is the pushforward of the K-dimensional Gaussian density ෤𝑞𝑡  under 

the map argmax, which yields a categorical distribution 𝑞𝑡  with K classes.

The Diffusion Duality

28



Despite bridged by the argmax operators, 𝑞𝑡  and ෤𝑞𝑡  are the marginals of two independent 

Markov processes, which induce different variational bounds on the log-likelihood.

Specifically, it can be shown that

log 𝑝𝜃 𝐱 ≥ ELBO 𝑞, 𝑝𝜃; 𝐱 ≥ ELBO( ෤𝑞, 𝑝𝜃; 𝐱),

with the equality holds when 𝑝𝜃 𝐱  is the optimal denoiser. This implies that the training 

objective of discrete diffusion provides a tighter bound on the log-likelihood and is 

directly used for training.

The Diffusion Duality

29



To model sequences 𝐱1:L ∼ 𝑞data, the authors follow prior works and impose token-wise 

independence assumption to factorize both forward and reverse processes:

𝑞𝑡 𝐳𝑡
1:L 𝐱1:L; 𝛼𝑡 = Π𝑙∈ L 𝑞𝑡(𝐳𝑡

𝑙 |𝐱𝑙; 𝛼𝑡)

𝑝𝜃 𝐳𝑠
1:L 𝐳𝑡

1:L = Π𝑙∈ L 𝑞𝑠|𝑡(𝐳𝑠
𝑙 |𝐳𝑡

1:L, 𝐱𝜃
𝑙 (𝐳𝑡

1:L, 𝑡))

where 𝐱𝜃: 𝒱L × 0,1 → ΔL is the (learned) denoising model.

The Diffusion Duality

30



The Diffusion Duality

31

With the trained model, the authors use a Greedy-Tail Sampler, a slightly modified version 

of ancestral sampler that trade-offs sample quality with the entropy.

In particular, at the last denoising step, the algorithm takes the argmax during decoding:

෤𝐱 = argmax p0|𝛿
𝜃 ⋅ ,

instead of drawing a sample from the categorical distribution Cat(⋅; p0|𝛿
𝜃 ⋅ ).



Applications

32

The authors explore two applications enabled by the found duality:

1. A curriculum learning strategy that reduces training variance for faster training;

2. A (consistency) distillation algorithm exploiting PF-ODE path on the continuous side.



Faster Training using Curriculum Learning

33

𝐱

𝐰𝑡

𝐳𝑡

Option 1

Option 2

NELBO 𝑞, 𝑝𝜃; 𝐱1:L

From the duality, it can be shown that the discrete diffusion NELBO for sequences

NELBO 𝑞, 𝑝𝜃; 𝐱1:L = 𝔼𝑡∼𝒰 0,1 ,𝑞𝑡
σ𝑙∈ L 𝑓Duo (𝐳𝑡

𝑙 , 𝐱𝜃
𝑙 𝐳𝑡

1:L, 𝑡 , 𝛼𝑡; 𝐱𝑙),

is equivalent to

NELBO 𝑞, 𝑝𝜃; 𝐱1:L

= 𝔼𝑡∼𝒰 0,1 , ෤𝑞𝑡
෍

𝑙∈ L

𝑓Duo 𝐳𝑡
𝑙 = argmax 𝐰𝑡

𝑙 , 𝐱𝜃 argmax 𝐰𝑡
𝑙′

𝑙′=1

L
, 𝑡 , 𝛼𝑡 = 𝒯 ෤𝛼𝑡 ; 𝐱𝑙 .



Faster Training using Curriculum Learning
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Notably, when K is large, the operator 𝒯 maps ෤𝛼𝑡  for 𝑡 in a small sub-interval 𝑎, 1 0≤𝑎≤1 to 

the almost entire range [0,1] of 𝛼𝑡 = 𝒯( ෤𝛼𝑡).

Gaussian Noise Level

Discrete Noise Level

𝓥 = 𝟑𝟎𝐊



Faster Training using Curriculum Learning
This implies that the argmax operator is highly sensitive to slight logit noise, yielding a 

large noise scale in the corresponding discrete uniform diffusion process.

35
Gaussian Noise Level

Discrete Noise Level

𝓥 = 𝟑𝟎𝐊



Faster Training using Curriculum Learning
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This sensitivity induces high variance in the training loss and gradients, leading to unstable 

optimization and slow convergence.

Comparison of the summed gradient variance of the top 100 weights.

Comparison of the summed gradient variance of the top 100 weights.

https://arxiv.org/abs/2304.10320


Faster Training using Curriculum Learning
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To address this, the authors propose a curriculum learning method that anneals the 

temperature parameter 𝜏 of softmax, an approximation of argmax during training:

argmax 𝐰𝑡
𝑙 = lim

𝜏→0+
softmax(𝐰𝑡

𝑙/𝜏).

By altering 𝜏 over training, the softmax converges to argmax, and the authors claim that 

this reduce training variance by easing recovery of the clean sequence from perturbed one.



Faster Training using Curriculum Learning
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For this, the denoising model 𝐱𝜃: ΔL ∪ 𝒱L × 0,1 → ΔL is redesigned to take both 

probability vectors and one-hot vectors as inputs. The model is trained by minimizing:

NELBO 𝑞, 𝑝𝜃; 𝐱1:L

= 𝔼𝑡∼𝒰 𝛽,𝛾 , ෤𝑞𝑡
෍

𝑙∈ L

𝑓Duo 𝐳𝑡
𝑙 = argmax 𝐰𝑡

𝑙 , 𝐱𝜃 softmax 𝐰𝑡
𝑙′

/𝜏
𝑙′=1

L
, 𝑡 , 𝛼𝑡 = 𝒯 ෤𝛼𝑡 ; 𝐱𝑙 .

 NOTE: This is not a valid NELBO except in the limiting case base , bold l bold i. bold m with , lower limit open paren bold tau goes to bold 0 to the plus , close paren of , bold s bold o bold f bold t bold m bold a. bold x
open paren dot over bold tau close paren  with bold beta equals bold 0  and bold gamma equals bold 1 .

NOTE: This is not a valid NELBO except in the limiting case
𝐥𝐢𝐦

𝛕→𝟎+
𝐬𝐨𝐟𝐭𝐦𝐚𝐱(⋅/𝛕) with 𝛃 = 𝟎 and 𝛄 = 𝟏.

https://arxiv.org/abs/2304.10320


Faster Training using Curriculum Learning
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For this, the denoising model 𝐱𝜃: ΔL ∪ 𝒱L × 0,1 → ΔL is redesigned to take both 

probability vectors and one-hot vectors as inputs. The model is trained by minimizing:

NELBO 𝑞, 𝑝𝜃; 𝐱1:L

= 𝔼𝑡∼𝒰 𝛽,𝛾 , ෤𝑞𝑡
෍

𝑙∈ L

𝑓Duo 𝐳𝑡
𝑙 = argmax 𝐰𝑡

𝑙 , 𝐱𝜃 softmax 𝐰𝑡
𝑙′

/𝜏
𝑙′=1

L
, 𝑡 , 𝛼𝑡 = 𝒯 ෤𝛼𝑡 ; 𝐱𝑙 .

Better Convergence than UDLM!

Better Convergence than UDLM!

https://arxiv.org/abs/2304.10320


Discrete Consistency Distillation (DCD)

40

On the other hand, continuous Gaussian diffusion enables the simulation of PF-ODE paths, 

which are non-trivial to define directly in discrete diffusion.

Discrete diffusion has PF-ODE path

Continuous diffusion has PF-ODE path

Continuous diffusion has SDE path

Categorical Sampling!

Categorical Sampling!

Categorical Sampling!

Categorical Sampling!

Consistency Models, Song et al., ICML 2023

Consistency Models, Song et al., ICML 2023

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469


Discrete Consistency Distillation (DCD)

41

To enable consistency distillation for discrete diffusion models, the authors take a detour:

Build a deterministic trajectory in Gaussian space and map it to the discrete space.

Remains fixed!

Remains fixed!

https://arxiv.org/abs/2304.10320
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For a clean data 𝐱1:L ∼ 𝑞data and Gaussian noise 𝛜1:L = {𝛜𝑙 ∼ 𝒩(0, 𝐈K)|∀𝑙 ∈ L }, define

𝒫ODE 𝐱1:L, 𝛜1:L = { ෤𝛼𝑡𝐱𝑙 + 1 − ෤𝛼𝑡
2𝛜𝑙

𝑙=1

L

}𝑡∈[0,1]

This trajectory is then projected to the discrete space via the argmax operator

𝒫DDT 𝐱1:L, 𝛜1:L = { argmax( ෤𝛼𝑡𝐱𝑙 + 1 − ෤𝛼𝑡
2𝛜𝑙)

𝑙=1

L

}𝑡∈ 0,1 ,

and serves as a proxy for the PF-ODE in the discrete space.
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Interpolates between 2 possibilities

Interpolates between 2 possibilities

https://arxiv.org/abs/2304.10320
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We distill a teacher model 𝐱𝜃−  to a student model 𝐱𝜃  that generates samples of similar 

quality while spending less steps. For this, we create a set of samples

𝐳𝑠
1:L, 𝐳𝑡

1:L ∼ {(𝐳𝑗−𝛿
1:L , 𝐳𝑗

1:L)|𝐳 ⋅
1:L ∈ 𝒫DDT 𝐱1:L, 𝛜1:L , 𝑗 ∈ 𝛿, 1 }

for a given step size 𝛿 ∈ [0,1].
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We distill a teacher model 𝐱𝜃−  to a student model 𝐱𝜃  that generates samples of similar 

quality while spending less steps. For this, we create a set of samples

𝐳𝑠
1:L, 𝐳𝑡

1:L ∼ {(𝐳𝑗−𝛿
1:L , 𝐳𝑗

1:L)|𝐳 ⋅
1:L ∈ 𝒫DDT 𝐱1:L, 𝛜1:L , 𝑗 ∈ 𝛿, 1 }

for a given step size 𝛿 ∈ [0,1].

With the pairs of noisy (𝐳𝑡
1:L) and less noisy (𝐳𝑠

1:L) samples, we train the student by 

optimizing

ℒDCD 𝜃; 𝜃− = 𝐷KL 𝐱𝜃 𝐳𝑡
1:L, 𝑡 , 𝐱𝜃− 𝐳𝑠

1:L, 𝑠 .
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Setup

49

The authors compare the proposed method, coined Duo, on standard language modeling 

benchmarks:

- LM1B [Chelba et al., 2014]

- OpenWebText (OWT) [Gokaslan et al., 2019]

All methods, including Duo, share the DiT architecture [Peebles & Xie, 2023] containing 

170M parameters for fair comparisons.
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Summary

- The curriculum learning accelerates training by 2x and sets a new SotA for USDMs;

- Duo performs similarly to absorbing state models, surpassing ARMs on 3/7 zero-shot 

PPL benchmarks.

Baselines (U: Uniform State Models / A: Absorbing State Models)

1. (U) SEDD Uniform [Lou et al., ICML 2024]

2. (U) UDLM [Schiff et al., ICLR 2025]

3. (U) PLAID [Gulrajani & Hashimoto, arXiv 2023]

4. (A) MDLM [Sahoo et al., NeurIPS 2024];

5. (A) SEDD Absorb [Lou et al., ICML 2024];

6. (A) D3PM Absorb [Austin et al., NeurIPS 2021];

7. AR.
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With a properly chosen 𝜏, the curriculum learning facilitates convergence and even 

improves the performance of the converged model compared to existing USDMs.



Improved Training

52

The evaluation of models trained on the OWT dataset on 7 other datasets shows the strong 

performance of Duo, even compared to ARMs in 3 datasets.
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Summary

- Duo generates higher-quality samples than all previous diffusion models;

- Combining DCD with the Greedy-Tail sampler reduces sampling steps by two orders of 

magnitude;

- Duo+DCD outperforms a distilled MDLM model (esp. in low NFEs).

Setup

- Duo trained on the OWT dataset is distilled via DCD;

- MDLM is distilled with SDTT [Deschenaux & Gulcehre, ICLR 2025];

- The models are distilled over N = 5 distillation rounds;

- The discretization step size 𝛿 begins with 1/512 and is doubled every 𝑀 = 10K steps;

- Sample quality is measured with GPT-2 Generative Perplexity;

- Sample diversity is measured with average sequence entropy.
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Without DCD, Duo achieves lower generative perplexities compared to both uniform and 

absorbing state diffusion models.
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Using the Greedy-Tail sampler, Duo+DCD performs on par with MDLM+SDTT at high NFEs 

and outperforms it at lower NFEs (but at the cost of sample diversity).



Conclusion
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This paper

- Establishes a theoretical connection between continuous-state Gaussian diffusion 

models and discrete-space Uniform-state diffusion models;

- Leverages the duality to design a curriculum learning strategy that doubles the 

training speed;

- Enables consistency distillation, yielding up to a two-order-of-magnitude speedup in 

sampling;

- Demonstrates that USDMs can surpass MDMs in low NFE regimes, thanks to their self-

correcting properties.
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- The discovered duality is about forward processes. Can we establish a similar 

connection for reverse processes, as well as continuous-state discrete diffusion 

models?

- While the authors claim that USDMs outperform MDMs in low NFE regimes, correction 

techniques (e.g., predictor-corrector, DDPD) are not considered in evaluations.

- With the recent surge of KV caching techniques for MDMs (e.g., Eso-LMs) that 

greatly accelerate inference, is it still worthwhile to explore USDMs?



Thank You
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