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Motivation

1

Non-autoregressive models have become the standard across high-dimensional 

modalities, including images and videos.

Esser et al., Stable Diffusion 3, ICML 2024
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Motivation

2

Recent efforts have aimed to extend these advances to discrete code and text generation, 

as exemplified by LLaDA [Nie et al., 2025] and Mercury [Inception Labs, 2025].

Mercury, Inception Labs

Mercury, Inception Labs

https://arxiv.org/abs/2304.10320
https://www.inceptionlabs.ai/introducing-mercury


Motivation
However, these approaches do not support token insertion or deletion—operations that 

are fundamental to sequence generation and editing.

3

Generative Flows on Discrete State-Spaces, Campbell et al., ICML 2024

Generative Flows on Discrete State-Spaces, Campbell et al., ICML 2024

Once a token is unmasked,it is unchanged until the end!

Once a token is unmasked,
it is unchanged until the end!
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Motivation
This work presents Edit Flows, an extension of Discrete Flow Matching [Gat et al., 2024] 

that enables the training of discrete flow models generating variable-length sequences.

4



Continuous-time Markov Chains (CTMCs)

5

Consider a continuous-time Markov chain (CTMC) over a discrete state space 𝒳, a 

Markov process that generates trajectories (𝑋𝑡)𝑡∈[0,1] characterized by:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

where 𝑢𝑡  denotes a rate-the infinitesimal transition probabilities between states.
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Consider a continuous-time Markov chain (CTMC) over a discrete state space 𝒳, a 

Markov process that generates trajectories (𝑋𝑡)𝑡∈[0,1] characterized by:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

where 𝑢𝑡  denotes a rate-the infinitesimal transition probabilities between states.

Sampling from a CTMC is done by iteratively applying the above formula, which often 

starts from an initial sample 𝑥0~𝑝(𝑥0) and ends at 𝑥1~𝑞 𝑥1 .

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial
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Continuous-time Markov Chains (CTMCs)
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The rate 𝑢𝑡(𝑥|𝑥𝑡) is the infinitesimal probabilities of transitioning from a state 𝑥𝑡  to any 

other state 𝑥 at time 𝑡, which must satisfy the rate condition

𝑢𝑡(𝑥|𝑥𝑡) ≥ 0 for all 𝑥 ≠ 𝑥𝑡, σ𝑥 𝑢𝑡 𝑥 𝑥𝑡 = 0

for the probability mass in the previous slide to be valid (i.e., sum to one).

Note that this implies that

𝑢𝑡 𝑥𝑡 𝑥𝑡 = − ෍
𝑥≠𝑥𝑡

𝑢𝑡 𝑥 𝑥𝑡



Continuous-time Markov Chains (CTMCs)
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In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.
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Continuous-time Markov Chains (CTMCs)
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Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.
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𝜏1

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)
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Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.
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𝜏2

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
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Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.
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𝜏3

…

…

t

𝑡

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)
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Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.
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𝜏1
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3
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…

…

t

𝑡

h

ℎ

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

Remark: 𝑢𝑡(𝑥|𝑥𝑡) ≥ 0 for all 𝑥 ≠ 𝑥𝑡

https://arxiv.org/abs/2304.10320
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https://arxiv.org/abs/2304.10320
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Continuous-time Markov Chains (CTMCs)
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A rate 𝑢𝑡  is said to generate a probability path 𝑝𝑡  if the time marginals of the associated 

CTMC are samples from 𝑝𝑡, i.e., 𝑋𝑡~𝑝𝑡.

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Remark: The probability path is shown in continuous state space for visualization purposes only.

Remark: The probability path is shown in continuous state space for visualization purposes only.

𝑝𝜏1
𝑝𝜏2

𝑝𝜏3

https://arxiv.org/abs/2304.10320
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://arxiv.org/abs/2304.10320


Continuous-time Markov Chains (CTMCs)
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A rate 𝑢𝑡  is said to generate a probability path 𝑝𝑡  if the time marginals of the associated 

CTMC are samples from 𝑝𝑡, i.e., 𝑋𝑡~𝑝𝑡.

Specifically, such a probability path satisfies the Kolmogorov Forward Equation (KFE):

𝜕

𝜕𝑡
𝑝𝑡 𝑥 = ෍

𝑦

𝑢𝑡(𝑥|𝑦)𝑝𝑡(𝑦) = ෍

𝑦≠𝑥

𝑢𝑡 𝑥 𝑦 𝑝𝑡 𝑦 − ෍

𝑦≠𝑥

𝑢𝑡 𝑦 𝑥 𝑝𝑡 𝑥

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

"The rate of change of a state's probabilityequals the net probability flux at that state."

"The rate of change of a state's probability
equals the net probability flux at that state."

https://arxiv.org/abs/2304.10320
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
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Discrete Flow Matching (DFM)
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Consider a discrete space over sequences of fixed length 𝑁, 𝒳 = 𝒯𝑁  where

𝒯 = {1, 2, ⋯ , 𝑀} is a vocabulary of size 𝑀.

The goal of DFM is to learn the marginal rate 𝑢𝑡(𝑥|𝑥𝑡) and simulate transitions of a CTMC:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

that generates a probability path 𝑝𝑡  interpolating an easy-to-sample distribution and the 

data distribution.

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial
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Discrete Flow Matching (DFM)

16

However, directly regressing the marginal rate is intractable, as it involves averaging over 

the data distribution. Instead, we can use the conditional rate as the regression target:

𝑢𝑡(𝑥|𝑥𝑡 , 𝑥0, 𝑥1)

which generates a conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) with 𝑝0 𝑥 𝑥0, 𝑥1 = 𝛿𝑥0
(𝑥) 

and 𝑝1 𝑥 𝑥0, 𝑥1 = 𝛿𝑥1
(𝑥).
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However, directly regressing the marginal rate is intractable, as it involves averaging over 

the data distribution. Instead, we can use the conditional rate as the regression target:

𝑢𝑡(𝑥|𝑥𝑡 , 𝑥0, 𝑥1)

which generates a conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) with 𝑝0 𝑥 𝑥0, 𝑥1 = 𝛿𝑥0
(𝑥) 

and 𝑝1 𝑥 𝑥0, 𝑥1 = 𝛿𝑥1
(𝑥).

(𝑥0, 𝑥1) is a sample from a coupling distribution 𝜋(𝑥0, 𝑥1), i.e., (𝑥0, 𝑥1)~𝜋(𝑥0, 𝑥1), which, 

in its simplest form, is modeled as the product of two independent densities:

𝜋 𝑥0, 𝑥1 = 𝑝 𝑥0 𝑞(𝑥1)



Discrete Flow Matching (DFM)
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The marginal probability path and marginal rate can be obtained via simple averaging:

𝑝𝑡 𝑥 = ෍
𝑥0,𝑥1

𝑝𝑡(𝑥|𝑥0, 𝑥1)𝜋(𝑥0, 𝑥1)

𝑢𝑡 𝑥 𝑥𝑡 = 𝔼𝑝𝑡 𝑥0, 𝑥1 𝑥𝑡
𝑢𝑡(𝑥|𝑥𝑡 , 𝑥0, 𝑥1)

where 𝑝0 𝑥 = 𝑝(𝑥) and 𝑝1 𝑥 = 𝑞(𝑥).
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M

𝑀
x 1

𝑥1

p t x x 0,x 1

𝑝𝑡(𝑥|𝑥0, 𝑥1)

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
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M

𝑀
x 1

𝑥1

M

𝑀
x 1

𝑥1

p t x

𝑝𝑡(𝑥)

p t x x 0,x 1

𝑝𝑡(𝑥|𝑥0, 𝑥1)

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
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Discrete Flow Matching (DFM)
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One popular target conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) is the factorized token-wise 

probability path [Gat et al., NeurIPS 2024]:

𝑝𝑡 𝑥𝑖 𝑥0
𝑖 , 𝑥1

𝑖 = 1 − 𝜅𝑡 𝛿𝑥0
𝑖 𝑥𝑖 + 𝜅𝑡𝛿𝑥1

𝑖 𝑥𝑖

𝑢𝑡 𝑥𝑖 𝑥𝑡
𝑖 , 𝑥0

𝑖 , 𝑥1
𝑖 =

ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑥1

𝑖 𝑥𝑖 − 𝛿
𝑥𝑡

𝑖 𝑥𝑖

where 𝜅𝑡  is a scheduler satisfying 𝜅0 = 0 and 𝜅1 = 1.
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One popular target conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) is the factorized token-wise 

probability path [Gat et al., NeurIPS 2024]:

𝑝𝑡 𝑥𝑖 𝑥0
𝑖 , 𝑥1

𝑖 = 1 − 𝜅𝑡 𝛿𝑥0
𝑖 𝑥𝑖 + 𝜅𝑡𝛿𝑥1

𝑖 𝑥𝑖

𝑢𝑡 𝑥𝑖 𝑥𝑡
𝑖 , 𝑥0

𝑖 , 𝑥1
𝑖 =

ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑥1

𝑖 𝑥𝑖 − 𝛿
𝑥𝑡

𝑖 𝑥𝑖

where 𝜅𝑡  is a scheduler satisfying 𝜅0 = 0 and 𝜅1 = 1.

The marginal distributions of (corrupted) sequences are modeled as:

𝑝𝑡 𝑥 𝑥0, 𝑥1 = ෑ
𝑖=1

𝑁

𝑝𝑡(𝑥𝑖|𝑥0
𝑖 , 𝑥1

𝑖 )

that are characterized by the conditional rate:

𝑢𝑡 𝑥 𝑥𝑡 , 𝑥0, 𝑥1 = σ𝑖 𝛿𝑥𝑡
(𝑥¬𝑖)𝑢𝑡(𝑥𝑖|𝑥𝑡

𝑖 , 𝑥0
𝑖 , 𝑥1

𝑖 )    with 𝛿𝑥𝑡
𝑥¬𝑖 = ς𝑗≠𝑖 𝛿

𝑥𝑡
𝑗 𝑥𝑗
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However, DFM has difficulty generating sequences of varying lengths, as illustrated in the 

example below.

I love computer science
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However, DFM has difficulty generating sequences of varying lengths, as illustrated in the 

example below.

I love computer science

truly
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However, DFM has difficulty generating sequences of varying lengths, as illustrated in the 

example below.

I love computer science

truly

Where to put a new token?

Where to put a new token?

https://arxiv.org/abs/2304.10320
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However, DFM has difficulty generating sequences of varying lengths, as illustrated in the 

example below.

I love computer science

truly

Where to put a new token?

Where to put a new token?
Which token to put?

Which token to put?

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
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However, DFM has difficulty generating sequences of varying lengths, as illustrated in the 

example below.

I love computer science

material



Discrete Flow Matching (DFM)

28

However, DFM has difficulty generating sequences of varying lengths, as illustrated in the 

example below.

I love computer science

biology
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In this work, we extend the DFM framework by allowing two sequences 𝑥, 𝑥𝑡 ∈ 𝑛=0ڂ
𝑁 𝒯𝑛  

differ by one edit operation, which is one of insertion, deletion, and substitution:

• ins 𝑥, 𝑖, 𝑎 = (𝑥1, … , 𝑥𝑖 , 𝑎, 𝑥𝑖+1, … , 𝑥𝑛(𝑥)) 

• del 𝑥, 𝑖 = 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … 𝑥𝑛 𝑥  

• sub 𝑥, 𝑖, 𝑎 = (𝑥1, … , 𝑥𝑖−1, 𝑎, 𝑥𝑖+1, … , 𝑥𝑛(𝑥)) 



Edit Flows
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Edit Flow sampling process.

Edit Flow sampling process.

https://arxiv.org/abs/2304.10320
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Since insertions, deletions, and substitutions produce mutually exclusive outcomes, we 

can define separate rates for each operation:

• 𝑢𝑡
𝜃 ins 𝑥, 𝑖, 𝑎 𝑥  = 𝜆𝑡,𝑖

ins 𝑥 𝑄𝑡,𝑖
ins 𝑎 𝑥                         for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 del 𝑥, 𝑖 𝑥  = 𝜆𝑡,𝑖

del 𝑥                                             for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 sub 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

sub 𝑥 𝑄𝑡,𝑖
sub 𝑎 𝑥                       for 𝑖 ∈ {1, … , 𝑛(𝑥)}
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Since insertions, deletions, and substitutions produce mutually exclusive outcomes, we 

can define separate rates for each operation:

• 𝑢𝑡
𝜃 ins 𝑥, 𝑖, 𝑎 𝑥  = 𝜆𝑡,𝑖

ins 𝑥 𝑄𝑡,𝑖
ins 𝑎 𝑥                         for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 del 𝑥, 𝑖 𝑥  = 𝜆𝑡,𝑖

del 𝑥                                             for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 sub 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

sub 𝑥 𝑄𝑡,𝑖
sub 𝑎 𝑥                       for 𝑖 ∈ {1, … , 𝑛(𝑥)}

The total rates of editing operations“Which operation should be applied to which token in x?”

The total rates of editing operations
“Which operation should be applied to which token in 𝑥?”

https://arxiv.org/abs/2304.10320
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Since insertions, deletions, and substitutions produce mutually exclusive outcomes, we 

can define separate rates for each operation:

• 𝑢𝑡
𝜃 ins 𝑥, 𝑖, 𝑎 𝑥  = 𝜆𝑡,𝑖

ins 𝑥 𝑄𝑡,𝑖
ins 𝑎 𝑥                         for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 del 𝑥, 𝑖 𝑥  = 𝜆𝑡,𝑖

del 𝑥                                             for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 sub 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

sub 𝑥 𝑄𝑡,𝑖
sub 𝑎 𝑥                       for 𝑖 ∈ {1, … , 𝑛(𝑥)}

Normalized distributions over token values a. T “Which value should be added or used to replace the selected token?”

Normalized distributions over token values 𝑎 ∈ 𝒯
“Which value should be added or used to replace the selected token?”

https://arxiv.org/abs/2304.10320
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Indeed, Edit Flow is a generalization of existing techniques, each of which can be obtained 

by restricting the rates.

• DFM: A special case that permits only substitutions, while disallowing token insertions 

and deletions (i.e., 𝜆𝑡,𝑖
ins = 0 and 𝜆𝑡,𝑖

del = 0) → Lacks support for varying lengths;

• AR: A special case that permits insertions to occur at the rightmost location (i.e., 

𝜆𝑡,𝑛(𝑥)
ins ≠ 0 → Incapable of making corrections.



Edit Flows are powerful.
But how can we train them?

35



Learning Edit Flows via Augmented CTMCs

36

The main challenge lies in defining the conditional probability path 𝑝𝑡 𝑥 𝑥0, 𝑥1  and its 

rate 𝑢𝑡(𝑥|𝑥0, 𝑥1) that our model can regress due to the enormous number of possible 

transitions that take one sequence to another:

Optimal

Optimal
Sub-optimal

Sub-optimal
Least Optimal

Least Optimal

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
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The key idea for simplifying the problem is to augment the space 𝒳 = 𝑛=0ڂ
𝑁 𝒯𝑛  by 

introducing an auxiliary token 𝜀 and define an auxiliary Markov process via alignment.

Optimal

Optimal
Sub-optimal

Sub-optimal
Least Optimal

Least Optimal

Blank Token(NOT added to T)

Blank Token
(NOT added to 𝒯)

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
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Edit operations can be recovered as tuples (𝑎 → 𝑏) with 𝑎, 𝑏 ∈ 𝒯 ∪ {𝜀}.

Insertion: a.

Insertion: 𝑎 = 𝜀

https://arxiv.org/abs/2304.10320
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Edit operations can be recovered as tuples (𝑎 → 𝑏) with 𝑎, 𝑏 ∈ 𝒯 ∪ {𝜀}.

Deletion: b

Deletion: b = 𝜀

https://arxiv.org/abs/2304.10320
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Edit operations can be recovered as tuples (𝑎 → 𝑏) with 𝑎, 𝑏 ∈ 𝒯 ∪ {𝜀}.

Substitution: a  and b

Substitution: a ≠ 𝜀 and b ≠ 𝜀

https://arxiv.org/abs/2304.10320
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Formally, let

• 𝒳 = 𝑛=0ڂ
𝑁 𝒯𝑛: The space of normal (raw) sequences of different lengths;

• 𝒵 = (𝒯 ∪ {𝜀})𝑁: The space of aligned sequences (i.e., padded with 𝜀’s);

• 𝑓rm−blanks (𝒵 → 𝒳): An operation that strips away all 𝜀 tokens;

• K𝜀ITTEN → KITTEN

• KITTEN𝜀𝜀𝜀 → KITTEN

• K𝜀I𝜀T𝜀T𝜀E𝜀N → KITTEN
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Given samples from the source 𝑥0~𝑝(𝑥) and target 𝑥1~𝑞(𝑥) in 𝒳, one can construct 

aligned sequences 𝑧0 and 𝑧1 by:

• randomly padding the sequences;

• solving for the optimal alignment that corresponds to the minimal edit distance.

This yields a coupling 𝜋(𝑧0, 𝑧1) over the auxiliary variables satisfying

𝑝 𝑥 = ෍
𝑧0

෍
𝑧1

𝜋(𝑧0, 𝑧1)𝛿𝑓rm−blanks 𝑧0
(𝑥)

𝑞 𝑥 = ෍
𝑧0

෍
𝑧1

𝜋(𝑧0, 𝑧1)𝛿𝑓rm−blanks 𝑧1
(𝑥)
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Furthermore, for 𝑧0, 𝑧1~𝜋, we define a conditional probability path over the augmented 

space 𝒳 ×  𝒵:

𝑝𝑡 𝑥, 𝑧 𝑥0, 𝑧0, 𝑥1, 𝑧1 = 𝑝𝑡 𝑥, 𝑧 𝑧0, 𝑧1 = 𝑝𝑡(𝑧|𝑧0, 𝑧1)𝛿𝑓rm−blanks 𝑧
(𝑥)

where 𝑝𝑡(𝑧|𝑧0, 𝑧1) is a token-wise mixture probability path:

𝑝𝑡 𝑧 𝑧0, 𝑧1 = ෑ
𝑖=1

𝑁

𝑝𝑡(𝑧𝑖|𝑧0
𝑖 , 𝑧1

𝑖 )
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The conditional rate 𝑢𝑡(𝑥, 𝑧|𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1) corresponding to the probability path is:

𝑢𝑡 𝑥, 𝑧 𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1 = 𝛿𝑓rm−blanks 𝑧
(𝑥) ෍

𝑖=1

𝑁 ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑧1

𝑖 𝑧𝑖 − 𝛿
𝑧𝑡

𝑖 𝑧𝑖 𝛿𝑧𝑡
(𝑧¬𝑖)

which is analogous to the conditional rate discussed in DFM:

𝑢𝑡 𝑥 𝑥𝑡 , 𝑥0, 𝑥1 = ෍
𝑖

ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑥1

𝑖 𝑥𝑖 − 𝛿
𝑥𝑡

𝑖 𝑥𝑖 𝛿𝑥𝑡
(𝑥¬𝑖)
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By marginalizing the conditional rate 𝑢𝑡 𝑥, 𝑧 𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1 , we obtain the unconditional 

rate of a CTMC over the original state space 𝒳:

𝑢𝑡 𝑥 𝑥𝑡 = ෍
𝑧

𝔼𝑝𝑡 𝑧0, 𝑧1, 𝑧𝑡 𝑥𝑡
𝑢𝑡(𝑥, 𝑧|𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1)
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It is proved that this unconditional rate can be learned by minimizing the training loss of 

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖 )|𝑥𝑡)

where 𝑥 𝑧𝑡 , 𝑖, 𝑧1
𝑖 = 𝑓rm−blanks(𝑧𝑡

1, … , 𝑧𝑡
𝑖−1, 𝑧1

𝑖 , 𝑧𝑡
𝑖+1, … , 𝑧𝑡

𝑁) is an output of one of the 

possible edit operations (insertion, deletion, and substitution).



Learning Edit Flows via Augmented CTMCs

47

It is proved that this unconditional rate can be learned by minimizing the training loss of 

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖 )|𝑥𝑡)

Regularize spurious editing operations

Regularize spurious editing operations

https://arxiv.org/abs/2304.10320
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It is proved that this unconditional rate can be learned by minimizing the training loss of 

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖 )|𝑥𝑡)

Weighted cross-entropy over edit operations for x t x 1

Weighted cross-entropy over edit operations for 𝒙𝒕 → 𝒙𝟏

https://arxiv.org/abs/2304.10320
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Departure

Departure

Destination

Destination

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
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Operation TypeToken Type

Operation Type
Token Type

https://arxiv.org/abs/2304.10320


Learning Edit Flows via Augmented CTMCs

54

It is proved that this unconditional rate can be learned by minimizing the training loss of 

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖 )|𝑥𝑡)

where 𝑥 𝑧𝑡 , 𝑖, 𝑧1
𝑖 = 𝑓rm−blanks(𝑧𝑡

1, … , 𝑧𝑡
𝑖−1, 𝑧1

𝑖 , 𝑧𝑡
𝑖+1, … , 𝑧𝑡

𝑁) is an output of one of the 

possible edit operations (insertion, deletion, and substitution).



Sampling Edit Flows

57

To sample from the model, we transport a source sample 𝑥0 ∼ 𝑝 to time 𝑡 = 1, by 

simulating the CTMC defined with the learned rate 𝑢𝑡
𝜃 𝑥 𝑥𝑡 . The exact probability of an 

edit operation characterized by the rate 𝜆𝑡,𝑖  occurring within (𝑡, 𝑡 + ℎ) is:

1 − 𝑒− 𝑡׬
𝑡+ℎ

𝜆𝑡,𝑖 𝑋𝑡 𝑑𝑡 ≈ ℎ𝜆𝑡,𝑖 𝑋𝑡 (Taylor Expansion)



Sampling Edit Flows

58

As with previous discrete diffusion/flow models, each next states are sampled 

independently. The sampling proceeds as follows:

1.  For each position 𝑖, sample whether to insert with probability ℎ𝜆𝑡,𝑖
ins 𝑋𝑡  and whether 

to delete or substitute with probability ℎ 𝜆𝑡,𝑖
del 𝑋𝑡 + 𝜆𝑡,𝑖

sub 𝑋𝑡 ;

2. If insertion or substitution occurs at token 𝑖, sample the new token value from 

𝑄𝑡,𝑖
ins 𝑎 𝑋𝑡  or 𝑄𝑡,𝑖

sub 𝑎 𝑋𝑡 ;

3. Move to the next timestep: 𝑡 ← 𝑡 + ℎ.
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Following [Nisonoff et al., 2024], the authors apply classifier-free guidance (CFG) [Ho and 

Salimans, 2021] during sampling, by adjusting the predicted rates:

෤𝑢𝑡 𝑥 𝑥𝑡 , 𝑐 = ሚ𝜆𝑡,𝑖 𝑥𝑡 , 𝑐 ෨𝑄𝑡(𝑎|𝑥𝑡 , 𝑐)

where ሚ𝜆𝑡 𝑥𝑡 , 𝑐 = 𝜆𝑡,𝑖 𝑥𝑡 𝑐 1+𝑤𝜆𝑡,𝑖 𝑥𝑡
−𝑤  and 𝑤 is guidance strength.
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Edit Flow is mainly tested on text generation tasks, including:

1. Image-to-Text Generation (280M models);

2. Text Generation (1.3B models);

3. Code Generation (1.3B models).
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As baselines, the authors consider SotA AR/non-AR models:

1. Llama 2 [Touvron et al., 2023]

2. Masked DFM [Gat et al., 2024]

These baselines are compared against three variants of Edit Flow:

1. Default Model: Starts from 𝑝 = 𝛿∅ (an empty string) and inserts/delete tokens;

2. Uniform 𝐗𝟎 + Edit Flow: 𝑋0 = 𝑋1, … , 𝑋100  where 𝑋𝑖~𝑝emp using empirical training 

token distribution;

3. Localized Edit Flow: A variant of edit flow using a localized propagation process.
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All baselines and variants of Edit Flow share the architecture from Llama [Grattafiori et al., 

2024; Touvron et al., 2023], with 280M and 1.3B parameters.

• All models are trained using the same compute budget;

• The maximum sequence length during training is set to 1024 tokens;

• AR baselines use causal attention, while non-AR methods full self-attention;

• For Edit Flow, FlexAttention [Dong et al., 2024] is used to handle varying lengths.
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For image captioning tasks, all methods are trained on the MS COCO dataset [Lin et al., 

2014] and Image Captioning 3M dataset.
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For text benchmarks, all methods are trained on the DCLM baseline 1.0 [Li et al., 2024] 

dataset. Edit Flow bridges the gap between non-AR- and AR-based methods.
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For code generation, all methods are trained on the CodeLlama datamix [Roziere et al., 

2023]. Oracle Length denotes the case where GT code length is known during generation.
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To summarize, this paper presents:

• Edit Flow, a novel extension of Discrete Flow Matching [Gat et al., 2024], which enables 

variable-length generation via edit operations-insertion, deletion, and substitution;

• A novel CTMC with conditional rates defined over an augmented state space, enabling a 

tractable training objective for Edit Flow;

• Extensive evaluations in image captioning and text/code generation demonstrate that 

non-autoregressive models can serve as potential replacements for current AR models.
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