
Edit Flows: Flow Matching with
Edit Operations

2025. 07. 04

Seungwoo Yoo

KAIST

arXiv 2025

Marton Havasi1, Brian Karrer1, Itai Gat1, Ricky T. Q. Chen1

1FAIR at Meta

Motivation

1

Non-autoregressive models have become the standard across high-dimensional

modalities, including images and videos.

Esser et al., Stable Diffusion 3, ICML 2024

Esser et al., Stable Diffusion 3, ICML 2024
Wan 2.1, Team Wan, arXiv 2025

Wan 2.1, Team Wan, arXiv 2025

https://arxiv.org/abs/2304.10320
https://dl.acm.org/doi/10.5555/3692070.3692573
https://dl.acm.org/doi/10.5555/3692070.3692573
https://dl.acm.org/doi/10.5555/3692070.3692573
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2503.20314
https://arxiv.org/abs/2503.20314
https://arxiv.org/abs/2503.20314

Motivation

2

Recent efforts have aimed to extend these advances to discrete code and text generation,

as exemplified by LLaDA [Nie et al., 2025] and Mercury [Inception Labs, 2025].

Mercury, Inception Labs

Mercury, Inception Labs

https://arxiv.org/abs/2304.10320
https://www.inceptionlabs.ai/introducing-mercury

Motivation
However, these approaches do not support token insertion or deletion—operations that

are fundamental to sequence generation and editing.

3

Generative Flows on Discrete State-Spaces, Campbell et al., ICML 2024

Generative Flows on Discrete State-Spaces, Campbell et al., ICML 2024

Once a token is unmasked,it is unchanged until the end!

Once a token is unmasked,
it is unchanged until the end!

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2304.10320

Motivation
This work presents Edit Flows, an extension of Discrete Flow Matching [Gat et al., 2024]

that enables the training of discrete flow models generating variable-length sequences.

4

Continuous-time Markov Chains (CTMCs)

5

Consider a continuous-time Markov chain (CTMC) over a discrete state space 𝒳, a

Markov process that generates trajectories (𝑋𝑡)𝑡∈[0,1] characterized by:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

where 𝑢𝑡 denotes a rate-the infinitesimal transition probabilities between states.

Continuous-time Markov Chains (CTMCs)

6

Consider a continuous-time Markov chain (CTMC) over a discrete state space 𝒳, a

Markov process that generates trajectories (𝑋𝑡)𝑡∈[0,1] characterized by:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

where 𝑢𝑡 denotes a rate-the infinitesimal transition probabilities between states.

Sampling from a CTMC is done by iteratively applying the above formula, which often

starts from an initial sample 𝑥0~𝑝(𝑥0) and ends at 𝑥1~𝑞 𝑥1 .

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

https://arxiv.org/abs/2304.10320
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/

Continuous-time Markov Chains (CTMCs)

7

The rate 𝑢𝑡(𝑥|𝑥𝑡) is the infinitesimal probabilities of transitioning from a state 𝑥𝑡 to any

other state 𝑥 at time 𝑡, which must satisfy the rate condition

𝑢𝑡(𝑥|𝑥𝑡) ≥ 0 for all 𝑥 ≠ 𝑥𝑡, σ𝑥 𝑢𝑡 𝑥 𝑥𝑡 = 0

for the probability mass in the previous slide to be valid (i.e., sum to one).

Note that this implies that

𝑢𝑡 𝑥𝑡 𝑥𝑡 = − ෍
𝑥≠𝑥𝑡

𝑢𝑡 𝑥 𝑥𝑡

Continuous-time Markov Chains (CTMCs)

8

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.

1

1

2

2

3

3

https://arxiv.org/abs/2304.10320
https://www.youtube.com/watch?v=yzc29vhM2Aw&ab_channel=ValenceLabs
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Continuous-time Markov Chains (CTMCs)

9

Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.

1

1

2

2

3

3

1

𝜏1

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

https://arxiv.org/abs/2304.10320
https://www.youtube.com/watch?v=yzc29vhM2Aw&ab_channel=ValenceLabs
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Continuous-time Markov Chains (CTMCs)

10

Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.

1

1

2

2

3

3

1

𝜏1

2

𝜏2

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

https://arxiv.org/abs/2304.10320
https://www.youtube.com/watch?v=yzc29vhM2Aw&ab_channel=ValenceLabs
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Continuous-time Markov Chains (CTMCs)

11

Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.

1

1

2

2

3

3

1

𝜏1

2

𝜏2

3

𝜏3

…

…

t

𝑡

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

https://arxiv.org/abs/2304.10320
https://www.youtube.com/watch?v=yzc29vhM2Aw&ab_channel=ValenceLabs
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Continuous-time Markov Chains (CTMCs)

12

Example adapted from a talk by Andrew Campbell and Jason Yim.

Example adapted from a talk by Andrew Campbell and Jason Yim.

1

1

2

2

3

3

1

𝜏1

2

𝜏2

3

𝜏3

…

…

t

𝑡

h

ℎ

In CTMC, state transitions occur as discrete jumps over the course of continuous time:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

Remark: 𝑢𝑡(𝑥|𝑥𝑡) ≥ 0 for all 𝑥 ≠ 𝑥𝑡

https://arxiv.org/abs/2304.10320
https://www.youtube.com/watch?v=yzc29vhM2Aw&ab_channel=ValenceLabs
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Continuous-time Markov Chains (CTMCs)

13

A rate 𝑢𝑡 is said to generate a probability path 𝑝𝑡 if the time marginals of the associated

CTMC are samples from 𝑝𝑡, i.e., 𝑋𝑡~𝑝𝑡.

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Remark: The probability path is shown in continuous state space for visualization purposes only.

Remark: The probability path is shown in continuous state space for visualization purposes only.

𝑝𝜏1
𝑝𝜏2

𝑝𝜏3

https://arxiv.org/abs/2304.10320
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://arxiv.org/abs/2304.10320

Continuous-time Markov Chains (CTMCs)

14

A rate 𝑢𝑡 is said to generate a probability path 𝑝𝑡 if the time marginals of the associated

CTMC are samples from 𝑝𝑡, i.e., 𝑋𝑡~𝑝𝑡.

Specifically, such a probability path satisfies the Kolmogorov Forward Equation (KFE):

𝜕

𝜕𝑡
𝑝𝑡 𝑥 = ෍

𝑦

𝑢𝑡(𝑥|𝑦)𝑝𝑡(𝑦) = ෍

𝑦≠𝑥

𝑢𝑡 𝑥 𝑦 𝑝𝑡 𝑦 − ෍

𝑦≠𝑥

𝑢𝑡 𝑦 𝑥 𝑝𝑡 𝑥

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

"The rate of change of a state's probabilityequals the net probability flux at that state."

"The rate of change of a state's probability
equals the net probability flux at that state."

https://arxiv.org/abs/2304.10320
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://arxiv.org/abs/2304.10320

Discrete Flow Matching (DFM)

15

Consider a discrete space over sequences of fixed length 𝑁, 𝒳 = 𝒯𝑁 where

𝒯 = {1, 2, ⋯ , 𝑀} is a vocabulary of size 𝑀.

The goal of DFM is to learn the marginal rate 𝑢𝑡(𝑥|𝑥𝑡) and simulate transitions of a CTMC:

ℙ 𝑋𝑡+ℎ = 𝑥 𝑋𝑡 = 𝑥𝑡 = 𝛿𝑥𝑡
𝑥 + ℎ𝑢𝑡 𝑥 𝑥𝑡 + 𝑜(ℎ)

that generates a probability path 𝑝𝑡 interpolating an easy-to-sample distribution and the

data distribution.

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

Lipman et al., Flow Matching Guide and Code, NeurIPS 2024 Tutorial

https://arxiv.org/abs/2304.10320
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/
https://ai.meta.com/research/publications/flow-matching-guide-and-code/

Discrete Flow Matching (DFM)

16

However, directly regressing the marginal rate is intractable, as it involves averaging over

the data distribution. Instead, we can use the conditional rate as the regression target:

𝑢𝑡(𝑥|𝑥𝑡 , 𝑥0, 𝑥1)

which generates a conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) with 𝑝0 𝑥 𝑥0, 𝑥1 = 𝛿𝑥0
(𝑥)

and 𝑝1 𝑥 𝑥0, 𝑥1 = 𝛿𝑥1
(𝑥).

Discrete Flow Matching (DFM)

17

However, directly regressing the marginal rate is intractable, as it involves averaging over

the data distribution. Instead, we can use the conditional rate as the regression target:

𝑢𝑡(𝑥|𝑥𝑡 , 𝑥0, 𝑥1)

which generates a conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) with 𝑝0 𝑥 𝑥0, 𝑥1 = 𝛿𝑥0
(𝑥)

and 𝑝1 𝑥 𝑥0, 𝑥1 = 𝛿𝑥1
(𝑥).

(𝑥0, 𝑥1) is a sample from a coupling distribution 𝜋(𝑥0, 𝑥1), i.e., (𝑥0, 𝑥1)~𝜋(𝑥0, 𝑥1), which,

in its simplest form, is modeled as the product of two independent densities:

𝜋 𝑥0, 𝑥1 = 𝑝 𝑥0 𝑞(𝑥1)

Discrete Flow Matching (DFM)

18

The marginal probability path and marginal rate can be obtained via simple averaging:

𝑝𝑡 𝑥 = ෍
𝑥0,𝑥1

𝑝𝑡(𝑥|𝑥0, 𝑥1)𝜋(𝑥0, 𝑥1)

𝑢𝑡 𝑥 𝑥𝑡 = 𝔼𝑝𝑡 𝑥0, 𝑥1 𝑥𝑡
𝑢𝑡(𝑥|𝑥𝑡 , 𝑥0, 𝑥1)

where 𝑝0 𝑥 = 𝑝(𝑥) and 𝑝1 𝑥 = 𝑞(𝑥).

Discrete Flow Matching (DFM)

19

M

𝑀
x 1

𝑥1

p t x x 0,x 1

𝑝𝑡(𝑥|𝑥0, 𝑥1)

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Discrete Flow Matching (DFM)

20

M

𝑀
x 1

𝑥1

M

𝑀
x 1

𝑥1

p t x

𝑝𝑡(𝑥)

p t x x 0,x 1

𝑝𝑡(𝑥|𝑥0, 𝑥1)

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Discrete Flow Matching (DFM)

21

One popular target conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) is the factorized token-wise

probability path [Gat et al., NeurIPS 2024]:

𝑝𝑡 𝑥𝑖 𝑥0
𝑖 , 𝑥1

𝑖 = 1 − 𝜅𝑡 𝛿𝑥0
𝑖 𝑥𝑖 + 𝜅𝑡𝛿𝑥1

𝑖 𝑥𝑖

𝑢𝑡 𝑥𝑖 𝑥𝑡
𝑖 , 𝑥0

𝑖 , 𝑥1
𝑖 =

ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑥1

𝑖 𝑥𝑖 − 𝛿
𝑥𝑡

𝑖 𝑥𝑖

where 𝜅𝑡 is a scheduler satisfying 𝜅0 = 0 and 𝜅1 = 1.

Discrete Flow Matching (DFM)

22

One popular target conditional probability path 𝑝𝑡(𝑥|𝑥0, 𝑥1) is the factorized token-wise

probability path [Gat et al., NeurIPS 2024]:

𝑝𝑡 𝑥𝑖 𝑥0
𝑖 , 𝑥1

𝑖 = 1 − 𝜅𝑡 𝛿𝑥0
𝑖 𝑥𝑖 + 𝜅𝑡𝛿𝑥1

𝑖 𝑥𝑖

𝑢𝑡 𝑥𝑖 𝑥𝑡
𝑖 , 𝑥0

𝑖 , 𝑥1
𝑖 =

ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑥1

𝑖 𝑥𝑖 − 𝛿
𝑥𝑡

𝑖 𝑥𝑖

where 𝜅𝑡 is a scheduler satisfying 𝜅0 = 0 and 𝜅1 = 1.

The marginal distributions of (corrupted) sequences are modeled as:

𝑝𝑡 𝑥 𝑥0, 𝑥1 = ෑ
𝑖=1

𝑁

𝑝𝑡(𝑥𝑖|𝑥0
𝑖 , 𝑥1

𝑖)

that are characterized by the conditional rate:

𝑢𝑡 𝑥 𝑥𝑡 , 𝑥0, 𝑥1 = σ𝑖 𝛿𝑥𝑡
(𝑥¬𝑖)𝑢𝑡(𝑥𝑖|𝑥𝑡

𝑖 , 𝑥0
𝑖 , 𝑥1

𝑖) with 𝛿𝑥𝑡
𝑥¬𝑖 = ς𝑗≠𝑖 𝛿

𝑥𝑡
𝑗 𝑥𝑗

Discrete Flow Matching (DFM)

23

However, DFM has difficulty generating sequences of varying lengths, as illustrated in the

example below.

I love computer science

Discrete Flow Matching (DFM)

24

However, DFM has difficulty generating sequences of varying lengths, as illustrated in the

example below.

I love computer science

truly

Discrete Flow Matching (DFM)

25

However, DFM has difficulty generating sequences of varying lengths, as illustrated in the

example below.

I love computer science

truly

Where to put a new token?

Where to put a new token?

https://arxiv.org/abs/2304.10320

Discrete Flow Matching (DFM)

26

However, DFM has difficulty generating sequences of varying lengths, as illustrated in the

example below.

I love computer science

truly

Where to put a new token?

Where to put a new token?
Which token to put?

Which token to put?

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Discrete Flow Matching (DFM)

27

However, DFM has difficulty generating sequences of varying lengths, as illustrated in the

example below.

I love computer science

material

Discrete Flow Matching (DFM)

28

However, DFM has difficulty generating sequences of varying lengths, as illustrated in the

example below.

I love computer science

biology

Edit Flows

29

In this work, we extend the DFM framework by allowing two sequences 𝑥, 𝑥𝑡 ∈ 𝑛=0ڂ
𝑁 𝒯𝑛

differ by one edit operation, which is one of insertion, deletion, and substitution:

• ins 𝑥, 𝑖, 𝑎 = (𝑥1, … , 𝑥𝑖 , 𝑎, 𝑥𝑖+1, … , 𝑥𝑛(𝑥))

• del 𝑥, 𝑖 = 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … 𝑥𝑛 𝑥

• sub 𝑥, 𝑖, 𝑎 = (𝑥1, … , 𝑥𝑖−1, 𝑎, 𝑥𝑖+1, … , 𝑥𝑛(𝑥))

Edit Flows

30

Edit Flow sampling process.

Edit Flow sampling process.

https://arxiv.org/abs/2304.10320

Edit Flows

31

Since insertions, deletions, and substitutions produce mutually exclusive outcomes, we

can define separate rates for each operation:

• 𝑢𝑡
𝜃 ins 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

ins 𝑥 𝑄𝑡,𝑖
ins 𝑎 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 del 𝑥, 𝑖 𝑥 = 𝜆𝑡,𝑖

del 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 sub 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

sub 𝑥 𝑄𝑡,𝑖
sub 𝑎 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

Edit Flows

32

Since insertions, deletions, and substitutions produce mutually exclusive outcomes, we

can define separate rates for each operation:

• 𝑢𝑡
𝜃 ins 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

ins 𝑥 𝑄𝑡,𝑖
ins 𝑎 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 del 𝑥, 𝑖 𝑥 = 𝜆𝑡,𝑖

del 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 sub 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

sub 𝑥 𝑄𝑡,𝑖
sub 𝑎 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

The total rates of editing operations“Which operation should be applied to which token in x?”

The total rates of editing operations
“Which operation should be applied to which token in 𝑥?”

https://arxiv.org/abs/2304.10320

Edit Flows

33

Since insertions, deletions, and substitutions produce mutually exclusive outcomes, we

can define separate rates for each operation:

• 𝑢𝑡
𝜃 ins 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

ins 𝑥 𝑄𝑡,𝑖
ins 𝑎 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 del 𝑥, 𝑖 𝑥 = 𝜆𝑡,𝑖

del 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

• 𝑢𝑡
𝜃 sub 𝑥, 𝑖, 𝑎 𝑥 = 𝜆𝑡,𝑖

sub 𝑥 𝑄𝑡,𝑖
sub 𝑎 𝑥 for 𝑖 ∈ {1, … , 𝑛(𝑥)}

Normalized distributions over token values a. T “Which value should be added or used to replace the selected token?”

Normalized distributions over token values 𝑎 ∈ 𝒯
“Which value should be added or used to replace the selected token?”

https://arxiv.org/abs/2304.10320

Edit Flows

34

Indeed, Edit Flow is a generalization of existing techniques, each of which can be obtained

by restricting the rates.

• DFM: A special case that permits only substitutions, while disallowing token insertions

and deletions (i.e., 𝜆𝑡,𝑖
ins = 0 and 𝜆𝑡,𝑖

del = 0) → Lacks support for varying lengths;

• AR: A special case that permits insertions to occur at the rightmost location (i.e.,

𝜆𝑡,𝑛(𝑥)
ins ≠ 0 → Incapable of making corrections.

Edit Flows are powerful.
But how can we train them?

35

Learning Edit Flows via Augmented CTMCs

36

The main challenge lies in defining the conditional probability path 𝑝𝑡 𝑥 𝑥0, 𝑥1 and its

rate 𝑢𝑡(𝑥|𝑥0, 𝑥1) that our model can regress due to the enormous number of possible

transitions that take one sequence to another:

Optimal

Optimal
Sub-optimal

Sub-optimal
Least Optimal

Least Optimal

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

37

The key idea for simplifying the problem is to augment the space 𝒳 = 𝑛=0ڂ
𝑁 𝒯𝑛 by

introducing an auxiliary token 𝜀 and define an auxiliary Markov process via alignment.

Optimal

Optimal
Sub-optimal

Sub-optimal
Least Optimal

Least Optimal

Blank Token(NOT added to T)

Blank Token
(NOT added to 𝒯)

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

38

Edit operations can be recovered as tuples (𝑎 → 𝑏) with 𝑎, 𝑏 ∈ 𝒯 ∪ {𝜀}.

Insertion: a.

Insertion: 𝑎 = 𝜀

https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

39

Edit operations can be recovered as tuples (𝑎 → 𝑏) with 𝑎, 𝑏 ∈ 𝒯 ∪ {𝜀}.

Deletion: b

Deletion: b = 𝜀

https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

40

Edit operations can be recovered as tuples (𝑎 → 𝑏) with 𝑎, 𝑏 ∈ 𝒯 ∪ {𝜀}.

Substitution: a and b

Substitution: a ≠ 𝜀 and b ≠ 𝜀

https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

41

Formally, let

• 𝒳 = 𝑛=0ڂ
𝑁 𝒯𝑛: The space of normal (raw) sequences of different lengths;

• 𝒵 = (𝒯 ∪ {𝜀})𝑁: The space of aligned sequences (i.e., padded with 𝜀’s);

• 𝑓rm−blanks (𝒵 → 𝒳): An operation that strips away all 𝜀 tokens;

• K𝜀ITTEN → KITTEN

• KITTEN𝜀𝜀𝜀 → KITTEN

• K𝜀I𝜀T𝜀T𝜀E𝜀N → KITTEN

Learning Edit Flows via Augmented CTMCs

42

Given samples from the source 𝑥0~𝑝(𝑥) and target 𝑥1~𝑞(𝑥) in 𝒳, one can construct

aligned sequences 𝑧0 and 𝑧1 by:

• randomly padding the sequences;

• solving for the optimal alignment that corresponds to the minimal edit distance.

This yields a coupling 𝜋(𝑧0, 𝑧1) over the auxiliary variables satisfying

𝑝 𝑥 = ෍
𝑧0

෍
𝑧1

𝜋(𝑧0, 𝑧1)𝛿𝑓rm−blanks 𝑧0
(𝑥)

𝑞 𝑥 = ෍
𝑧0

෍
𝑧1

𝜋(𝑧0, 𝑧1)𝛿𝑓rm−blanks 𝑧1
(𝑥)

Learning Edit Flows via Augmented CTMCs

43

Furthermore, for 𝑧0, 𝑧1~𝜋, we define a conditional probability path over the augmented

space 𝒳 × 𝒵:

𝑝𝑡 𝑥, 𝑧 𝑥0, 𝑧0, 𝑥1, 𝑧1 = 𝑝𝑡 𝑥, 𝑧 𝑧0, 𝑧1 = 𝑝𝑡(𝑧|𝑧0, 𝑧1)𝛿𝑓rm−blanks 𝑧
(𝑥)

where 𝑝𝑡(𝑧|𝑧0, 𝑧1) is a token-wise mixture probability path:

𝑝𝑡 𝑧 𝑧0, 𝑧1 = ෑ
𝑖=1

𝑁

𝑝𝑡(𝑧𝑖|𝑧0
𝑖 , 𝑧1

𝑖)

Learning Edit Flows via Augmented CTMCs

44

The conditional rate 𝑢𝑡(𝑥, 𝑧|𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1) corresponding to the probability path is:

𝑢𝑡 𝑥, 𝑧 𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1 = 𝛿𝑓rm−blanks 𝑧
(𝑥) ෍

𝑖=1

𝑁 ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑧1

𝑖 𝑧𝑖 − 𝛿
𝑧𝑡

𝑖 𝑧𝑖 𝛿𝑧𝑡
(𝑧¬𝑖)

which is analogous to the conditional rate discussed in DFM:

𝑢𝑡 𝑥 𝑥𝑡 , 𝑥0, 𝑥1 = ෍
𝑖

ሶ𝜅𝑡

1 − 𝜅𝑡
𝛿𝑥1

𝑖 𝑥𝑖 − 𝛿
𝑥𝑡

𝑖 𝑥𝑖 𝛿𝑥𝑡
(𝑥¬𝑖)

Learning Edit Flows via Augmented CTMCs

45

By marginalizing the conditional rate 𝑢𝑡 𝑥, 𝑧 𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1 , we obtain the unconditional

rate of a CTMC over the original state space 𝒳:

𝑢𝑡 𝑥 𝑥𝑡 = ෍
𝑧

𝔼𝑝𝑡 𝑧0, 𝑧1, 𝑧𝑡 𝑥𝑡
𝑢𝑡(𝑥, 𝑧|𝑥𝑡 , 𝑧𝑡 , 𝑧0, 𝑧1)

Learning Edit Flows via Augmented CTMCs

46

It is proved that this unconditional rate can be learned by minimizing the training loss of

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖)|𝑥𝑡)

where 𝑥 𝑧𝑡 , 𝑖, 𝑧1
𝑖 = 𝑓rm−blanks(𝑧𝑡

1, … , 𝑧𝑡
𝑖−1, 𝑧1

𝑖 , 𝑧𝑡
𝑖+1, … , 𝑧𝑡

𝑁) is an output of one of the

possible edit operations (insertion, deletion, and substitution).

Learning Edit Flows via Augmented CTMCs

47

It is proved that this unconditional rate can be learned by minimizing the training loss of

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖)|𝑥𝑡)

Regularize spurious editing operations

Regularize spurious editing operations

https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

48

It is proved that this unconditional rate can be learned by minimizing the training loss of

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖)|𝑥𝑡)

Weighted cross-entropy over edit operations for x t x 1

Weighted cross-entropy over edit operations for 𝒙𝒕 → 𝒙𝟏

https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

49

Learning Edit Flows via Augmented CTMCs

50

Departure

Departure

Destination

Destination

https://arxiv.org/abs/2304.10320
https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

51

Learning Edit Flows via Augmented CTMCs

52

Learning Edit Flows via Augmented CTMCs

53

Operation TypeToken Type

Operation Type
Token Type

https://arxiv.org/abs/2304.10320

Learning Edit Flows via Augmented CTMCs

54

It is proved that this unconditional rate can be learned by minimizing the training loss of

form:

ℒ 𝜃 = 𝔼 𝜋(𝑧0,𝑧1)

𝑡,𝑝𝑡(𝑥𝑡,𝑧𝑡|𝑧0,𝑧1)

෍

𝑥≠𝑥𝑡

𝑢𝑡
𝜃 𝑥 𝑥𝑡 − ෍

𝑖=1

𝑁

𝟏
[𝑧1

𝑖 ≠𝑧𝑡
𝑖]

ሶ𝜅𝑡

1 − 𝜅𝑡
log 𝑢𝑡

𝜃(𝑥(𝑧𝑡 , 𝑖, 𝑧1
𝑖)|𝑥𝑡)

where 𝑥 𝑧𝑡 , 𝑖, 𝑧1
𝑖 = 𝑓rm−blanks(𝑧𝑡

1, … , 𝑧𝑡
𝑖−1, 𝑧1

𝑖 , 𝑧𝑡
𝑖+1, … , 𝑧𝑡

𝑁) is an output of one of the

possible edit operations (insertion, deletion, and substitution).

Sampling Edit Flows

57

To sample from the model, we transport a source sample 𝑥0 ∼ 𝑝 to time 𝑡 = 1, by

simulating the CTMC defined with the learned rate 𝑢𝑡
𝜃 𝑥 𝑥𝑡 . The exact probability of an

edit operation characterized by the rate 𝜆𝑡,𝑖 occurring within (𝑡, 𝑡 + ℎ) is:

1 − 𝑒− 𝑡׬
𝑡+ℎ

𝜆𝑡,𝑖 𝑋𝑡 𝑑𝑡 ≈ ℎ𝜆𝑡,𝑖 𝑋𝑡 (Taylor Expansion)

Sampling Edit Flows

58

As with previous discrete diffusion/flow models, each next states are sampled

independently. The sampling proceeds as follows:

1. For each position 𝑖, sample whether to insert with probability ℎ𝜆𝑡,𝑖
ins 𝑋𝑡 and whether

to delete or substitute with probability ℎ 𝜆𝑡,𝑖
del 𝑋𝑡 + 𝜆𝑡,𝑖

sub 𝑋𝑡 ;

2. If insertion or substitution occurs at token 𝑖, sample the new token value from

𝑄𝑡,𝑖
ins 𝑎 𝑋𝑡 or 𝑄𝑡,𝑖

sub 𝑎 𝑋𝑡 ;

3. Move to the next timestep: 𝑡 ← 𝑡 + ℎ.

Sampling Edit Flows

59

Following [Nisonoff et al., 2024], the authors apply classifier-free guidance (CFG) [Ho and

Salimans, 2021] during sampling, by adjusting the predicted rates:

෤𝑢𝑡 𝑥 𝑥𝑡 , 𝑐 = ሚ𝜆𝑡,𝑖 𝑥𝑡 , 𝑐 ෨𝑄𝑡(𝑎|𝑥𝑡 , 𝑐)

where ሚ𝜆𝑡 𝑥𝑡 , 𝑐 = 𝜆𝑡,𝑖 𝑥𝑡 𝑐 1+𝑤𝜆𝑡,𝑖 𝑥𝑡
−𝑤 and 𝑤 is guidance strength.

Experiments

60

Edit Flow is mainly tested on text generation tasks, including:

1. Image-to-Text Generation (280M models);

2. Text Generation (1.3B models);

3. Code Generation (1.3B models).

Experiments

61

As baselines, the authors consider SotA AR/non-AR models:

1. Llama 2 [Touvron et al., 2023]

2. Masked DFM [Gat et al., 2024]

These baselines are compared against three variants of Edit Flow:

1. Default Model: Starts from 𝑝 = 𝛿∅ (an empty string) and inserts/delete tokens;

2. Uniform 𝐗𝟎 + Edit Flow: 𝑋0 = 𝑋1, … , 𝑋100 where 𝑋𝑖~𝑝emp using empirical training

token distribution;

3. Localized Edit Flow: A variant of edit flow using a localized propagation process.

Experiments

62

All baselines and variants of Edit Flow share the architecture from Llama [Grattafiori et al.,

2024; Touvron et al., 2023], with 280M and 1.3B parameters.

• All models are trained using the same compute budget;

• The maximum sequence length during training is set to 1024 tokens;

• AR baselines use causal attention, while non-AR methods full self-attention;

• For Edit Flow, FlexAttention [Dong et al., 2024] is used to handle varying lengths.

Experiments

63

For image captioning tasks, all methods are trained on the MS COCO dataset [Lin et al.,

2014] and Image Captioning 3M dataset.

Experiments

64

For text benchmarks, all methods are trained on the DCLM baseline 1.0 [Li et al., 2024]

dataset. Edit Flow bridges the gap between non-AR- and AR-based methods.

Experiments

65

For code generation, all methods are trained on the CodeLlama datamix [Roziere et al.,

2023]. Oracle Length denotes the case where GT code length is known during generation.

Conclusion

66

To summarize, this paper presents:

• Edit Flow, a novel extension of Discrete Flow Matching [Gat et al., 2024], which enables

variable-length generation via edit operations-insertion, deletion, and substitution;

• A novel CTMC with conditional rates defined over an augmented state space, enabling a

tractable training objective for Edit Flow;

• Extensive evaluations in image captioning and text/code generation demonstrate that

non-autoregressive models can serve as potential replacements for current AR models.

Edit Flows: Flow Matching with Edit Operations

Seungwoo Yoo
KAIST

https://dvelopery0115.github.io

https://dvelopery0115.github.io/

	Slide 0: Edit Flows: Flow Matching with Edit Operations
	Slide 1: Motivation
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Continuous-time Markov Chains (CTMCs)
	Slide 6: Continuous-time Markov Chains (CTMCs)
	Slide 7: Continuous-time Markov Chains (CTMCs)
	Slide 8: Continuous-time Markov Chains (CTMCs)
	Slide 9: Continuous-time Markov Chains (CTMCs)
	Slide 10: Continuous-time Markov Chains (CTMCs)
	Slide 11: Continuous-time Markov Chains (CTMCs)
	Slide 12: Continuous-time Markov Chains (CTMCs)
	Slide 13: Continuous-time Markov Chains (CTMCs)
	Slide 14: Continuous-time Markov Chains (CTMCs)
	Slide 15: Discrete Flow Matching (DFM)
	Slide 16: Discrete Flow Matching (DFM)
	Slide 17: Discrete Flow Matching (DFM)
	Slide 18: Discrete Flow Matching (DFM)
	Slide 19: Discrete Flow Matching (DFM)
	Slide 20: Discrete Flow Matching (DFM)
	Slide 21: Discrete Flow Matching (DFM)
	Slide 22: Discrete Flow Matching (DFM)
	Slide 23: Discrete Flow Matching (DFM)
	Slide 24: Discrete Flow Matching (DFM)
	Slide 25: Discrete Flow Matching (DFM)
	Slide 26: Discrete Flow Matching (DFM)
	Slide 27: Discrete Flow Matching (DFM)
	Slide 28: Discrete Flow Matching (DFM)
	Slide 29: Edit Flows
	Slide 30: Edit Flows
	Slide 31: Edit Flows
	Slide 32: Edit Flows
	Slide 33: Edit Flows
	Slide 34: Edit Flows
	Slide 35: Edit Flows are powerful. But how can we train them?
	Slide 36: Learning Edit Flows via Augmented CTMCs
	Slide 37: Learning Edit Flows via Augmented CTMCs
	Slide 38: Learning Edit Flows via Augmented CTMCs
	Slide 39: Learning Edit Flows via Augmented CTMCs
	Slide 40: Learning Edit Flows via Augmented CTMCs
	Slide 41: Learning Edit Flows via Augmented CTMCs
	Slide 42: Learning Edit Flows via Augmented CTMCs
	Slide 43: Learning Edit Flows via Augmented CTMCs
	Slide 44: Learning Edit Flows via Augmented CTMCs
	Slide 45: Learning Edit Flows via Augmented CTMCs
	Slide 46: Learning Edit Flows via Augmented CTMCs
	Slide 47: Learning Edit Flows via Augmented CTMCs
	Slide 48: Learning Edit Flows via Augmented CTMCs
	Slide 49: Learning Edit Flows via Augmented CTMCs
	Slide 50: Learning Edit Flows via Augmented CTMCs
	Slide 51: Learning Edit Flows via Augmented CTMCs
	Slide 52: Learning Edit Flows via Augmented CTMCs
	Slide 53: Learning Edit Flows via Augmented CTMCs
	Slide 54: Learning Edit Flows via Augmented CTMCs
	Slide 57: Sampling Edit Flows
	Slide 58: Sampling Edit Flows
	Slide 59: Sampling Edit Flows
	Slide 60: Experiments
	Slide 61: Experiments
	Slide 62: Experiments
	Slide 63: Experiments
	Slide 64: Experiments
	Slide 65: Experiments
	Slide 66: Conclusion
	Slide 67: Edit Flows: Flow Matching with Edit Operations

