From Microfacets to Participating Media: A Unified Theory of Light Transport with Stochastic Geometry

Dario Seyb, Eugene D'eon, Benedikt Bitterli, Wojciech Jarosz ACM ToG 2024 (Best Paper Award)

Seungwoo Yoo, KAIST Visual AI Group

Prologue

Prologue: Light Transport Theory in CG Simulating the behavior of light in a 3D space is crucial in photorealistic rendering, and numerous techniques have been developed over the decades.

Physically Based Rendering: From Theory To Implementation (4th edition) Matt Pharr, Wenzel Jakob, and Greg Humphreys

Cotton Candy Chenlin Meng, Hubert Teo, and Jiren Zhu

Prologue: Light Transport Theory in CG Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under various conditions including geometry, lighting, and material properties.

 $L_{o}(\mathbf{X}, \omega_{o}, \lambda, t) = L_{e}(\mathbf{X}, \omega_{o}, \lambda, t) + L_{r}(\mathbf{X}, \omega_{o}, \lambda, t)$

"The radiance from a point is the sum of the radiance emitted and reflected at the point."

Prologue: Light Transport Theory in CG Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under

$$L_{o}\left(\mathbf{x},\omega_{o},\lambda,t\right) = L_{e}\left(\mathbf{x},\omega_{o},\lambda,t\right) + L_{r}\left(\mathbf{x},\omega_{o},\lambda,t\right)$$

$$\downarrow$$

$$L_{r}\left(\mathbf{x},\omega_{o},\lambda,t\right) = \int f_{r}\left(\mathbf{x},\omega_{i},\omega_{o},\lambda,t\right)L_{i}\left(\mathbf{x},\omega_{i},\lambda,t\right)\left(\omega_{i}\cdot\mathbf{n}\right)d\omega_{i}$$

$$L_{o}\left(\mathbf{x},\omega_{o},\lambda,t\right) = L_{e}\left(\mathbf{x},\omega_{o},\lambda,t\right) + L_{r}\left(\mathbf{x},\omega_{o},\lambda,t\right)$$
$$L_{r}\left(\mathbf{x},\omega_{o},\lambda,t\right) = \int_{\Omega} f_{r}\left(\mathbf{x},\omega_{i},\omega_{o},\lambda,t\right) L_{i}\left(\mathbf{x},\omega_{i},\lambda,t\right)\left(\omega_{i}\cdot\mathbf{n}\right) d\omega_{i}$$

- various conditions including geometry, lighting, and material properties.

"The reflected radiance is the sum of all incoming radiance, each weighted by a BRDF."

Prologue: Light Transport Theory in CG Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under various conditions including geometry, lighting, and material properties.

$$L_{o}\left(\mathbf{x},\omega_{o},\lambda,t\right) = L_{e}\left(\mathbf{x},\omega_{o},\lambda,t\right) + L_{r}\left(\mathbf{x},\omega_{o},\lambda,t\right)$$

$$L_{r}\left(\mathbf{x},\omega_{o},\lambda,t\right) = \int_{\Omega} f_{r}\left(\mathbf{x},\omega_{i},\omega_{o},\lambda,t\right) L_{i}\left(\mathbf{x},\omega_{i},\lambda,t\right) \left(\omega_{i}\cdot\mathbf{n}\right) d\omega_{i}$$

The rendering equation is recursive by definition.

Prologue: Light Transport Theory in CG Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under

$$L_o\left(\mathbf{X}, \omega_o, \lambda, t\right) = L_e\left(\mathbf{X}, \omega_o, \lambda, t\right) + L_r\left(\mathbf{X}, \omega_o, \lambda, t\right)$$

$$L_r(\mathbf{X}, \omega_o, \lambda, t) = \int_{\Omega} f_r(\mathbf{X}, \omega_i, t) dt$$

The rendering equation is an integral equation.

various conditions including geometry, lighting, and material properties.

 $(\omega_{o}, \lambda, t) L_{i}(\mathbf{x}, \omega_{i}, \lambda, t) (\omega_{i} \cdot \mathbf{n}) d\omega_{i}$

Prologue: Light Transport Theory in CG However, solving the rendering equation demands substantial computational resources due to the need for recursive integral evaluations.

Rendering Equation Wikipedia

$$\int_{\Omega} f_r \left(\mathbf{x}, \omega_i, \omega_o, \lambda, t \right) L_i \left(\mathbf{x}, \omega_i, \lambda, t \right) \left(\omega_i \cdot \mathbf{n} \right)$$

For all ray direction ω_i 's over a unit hemisphere Ω_i , evaluate the BRDF f_r and incoming radiance L_i .

Prologue: Light Transport Theory in CG Monte Carlo method involving random sampling. $\int_{a}^{b} f(x) dx$ The MC estimator for the integral is:

where $X_i \sim U(a, b)$. The estimator is *unbiased*. That is, $\mathbb{E}[F_n] = \int^b f(x) dx$ and

its estimate converges to the true value of the integral in average.

Complex, recursive integrals in the rendering equation is estimated using the

Prologue: Light Transport Theory in CG Ray tracers are programs that merely compute the MC estimate of the solutions of the rendering equation by recursively tracing rays starting from image pixels.

The path to path-traced movies, Foundations and Trends in Computer Graphics and Vision 2016 Per H. Christensen and Woiciech Jarosz

Prologue: Light Transport Theory in CG

Importance Sampling

BRDF Acquisition

Subsurface Scattering

Path Space

Acceleration Structures

Control Variates

Denoising

Inverse Rendering

Rendering Distributions of Surfaces

Motivation

The current light transport theory handles hard surfaces and volumetric

"Reflections" – A Star Wars UE4 Real-Time Ray Tracing Cinematic Demo Epic Games, ILMxLAB, and NVIDIA

participating media differently, struggling to model categories that lie in-between.

A radiative transfer framework for non-exponential media, ACM ToG 2018 Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz

Motivation

This paper introduces a unified light transport theory of surface and participating media, which extends to a wider range of geometry types.

In-Betweens

In a Nutshell...

This paper proposes to represent objects as stochastic implicit surfaces, specified by means and covariances of Gaussian Processes (GPs).

There "will" be errors. Feel free to interrupt me if you have questions.

Heavy Math Ahead!

Background & Notation Gaussian Processes

function follow an *n*-dimensional Gaussian distribution

$$f_X \sim \mathcal{N}$$

where $\mu(X) = [\mu(\mathbf{x}_1), ..., \mu(\mathbf{x}_n)]^T$ is an *n*-dimensional mean vector and

respectively.

- A Gaussian process $GP(\mu, k)_{\Omega}$ is a distribution over functions $f: \Omega \to \mathbb{R}$ such that for any finite set of locations $\mathbf{x}_1, \ldots, \mathbf{x}_n = X \subseteq \Omega$, the evaluations of the

 - $(\mu(X), k(X, X))$
- k(X, X) is an $n \times n$ covariance matrix, with entries $k(X, X)^{i,j} = k(\mathbf{x}_i, \mathbf{x}_j)$.
- The functions μ and k are denoted the mean function and covariance kernel,

Background & Notation Gaussian Processes

Realization 1 (LP)

Realization 2 (LP)

Squared Exponential Locally Periodic

Prior Mean

Realization 1 (SE)

Realization 1 (SE)

Background & Notation Covariance Kernel Functions

GPs. A kernel describes how similar values are at nearby points in space.

Positive Semi-Definite

In this work, we are interested in particular types of kernels: Stationary Kernels: $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{y} - \mathbf{x})$ Isotropic Kernels: $k(\mathbf{x}, \mathbf{y}) = k(||\mathbf{y} - \mathbf{x}||)$ Non-Stationary Kernels: $k(\mathbf{x}, \mathbf{y}) \neq k(\mathbf{y} - \mathbf{x}) \rightarrow \text{Tricky}$, but useful!

- Kernel functions determine the shape of GPs and serve as a design variable for
 - **Closed under Multiplication and Addition**

Background & Notation Restricting Domains of Gaussian Processes from the entire 3D space \mathbb{R}^3 . In general,

 $f(\mathbf{X}_{\mathbb{R}})$

holds for $f \sim GP(\mu, k)_{\mathbb{R}^3}$ and $g \sim GP(\mu, k)_{X_m}$. This property allows us to evaluate GPs on low-dimensional slices without changing the mean or covariance kernel.

The input domain of a GP can be *restricted* without altering its statistics. We are interested in restricting the domain to points on a line $\mathbf{x}_{\mathbb{R}} = \{\mathbf{x} + t\omega \mid t \in \mathbb{R}\}$

$$g_{\mathbb{R}}) = g(\mathbf{x}_{\mathbb{R}})$$

Background & Notation Conditioned Processes

we can conditionally sample such functions that pass through the point(s).

$$f \sim \operatorname{GP}\left(\mu_{|\zeta_m}(\mathbf{x}), k_{|\zeta_m}(\mathbf{x}, \mathbf{y})\right), \text{ where}$$
$$\mu_{|\zeta_m}(\mathbf{x}) = \mu(\mathbf{x}) + k(\mathbf{x}, C)k(C, C)^{-1}(m - \mu(C)),$$
$$k_{|\zeta_m}(\mathbf{x}, \mathbf{y}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, C)k(C, C)^{-1}k(C, \mathbf{x}),$$

$$f \sim \operatorname{GP}\left(\mu_{|\zeta_m}(\mathbf{x}), k_{|\zeta_m}(\mathbf{x}, \mathbf{y})\right), \text{ where}$$
$$\mu_{|\zeta_m}(\mathbf{x}) = \mu(\mathbf{x}) + k(\mathbf{x}, C)k(C, C)^{-1}(m - \mu(C)),$$
$$k_{|\zeta_m}(\mathbf{x}, \mathbf{y}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, C)k(C, C)^{-1}k(C, \mathbf{x}),$$

 $\mathcal{O}(n^3)$ time complexity with *n* observations.

Given the location(s) of point(s) on the graphs of functions sampled from a GP,

Conditional sampling involves computing matrix inverse $k(C, C)^{-1}$, which has

Background & Notation Conditioned Processes

Posterior Mean (LP)

Observation 1

Posterior Mean (SE)

Background & Notation Sampling from GPs

Samples at a set of points X can be drawn from a $GP(\mu, k)$ via

$f(X) = \mu(X) + k(X, X)^{\frac{1}{2}}\eta$

where $\eta \sim \mathcal{N}(0,I)$ and $A^{\frac{1}{2}}$ is the matrix square root. This computation has also time complexity $\mathcal{O}(p^3)$ where p = |X|.

Background & Notation Derivatives of GPs

Thanks to the linearity of the derivative operator, the derivative of a GP is another GP:

where $k_{\mathbf{x},\mathbf{y}}(\mathbf{x},\mathbf{y}) = \frac{\partial^2 k(\mathbf{x},\mathbf{y})}{\partial \mathbf{x} \partial \mathbf{y}}$.

 $GP'(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{y})) = GP(\mu'(\mathbf{x}), k_{\mathbf{x}, \mathbf{y}}(\mathbf{x}, \mathbf{y}))$

Background & Notation Derivatives of GPs

Furthermore, the joint value-derivative distribution can be computed as:

$$\begin{bmatrix} f(X) \\ f'(Y) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu(X) \\ \mu'(Y) \end{bmatrix}, \begin{bmatrix} k(X,X) & k_{\mathbf{y}}(X,Y) \\ k_{\mathbf{x}}(Y,X) & k_{\mathbf{x},\mathbf{y}}(Y,Y) \end{bmatrix} \right)$$

vectors on surfaces derived from GPs.

This property will be later exploited when we consider distributions of normal

Background & Notation Implicit Surfaces

Each function sampled from a GP represents an implicit surface $f: \Omega \to \mathbb{R}, \{$

where l is the signed distance from \mathbf{x} to the closest surface point.

the ray distance s such that $f(\mathbf{x} + s\omega) = 0$. More precisely,

$$\mathbf{x} \in \Omega \left| f(\mathbf{x}) = l \right\}$$

- Computing an intersection between a ray and the surface is equivalent to finding

 - $s = \operatorname{argmin}_{t \in \mathbb{R}^+} f(\mathbf{x}_t) = 0$

Background & Notation **Implicit Surfaces**

The normal vector at the intersection \mathbf{x}_{s} can be easily computed as

A Dataset and Explorer for 3D Signed Distance Functions, i3D 2022 Towaki Takikawa, Andrew Glassner, and Morgan McGuire

Background & Notation Stochastic Implicit Surfaces

Light Transport (Mean Implicit Surface)

A stochastic implicit surface (SIS) is the distribution of level sets defined by a stochastic process. Our interest is Gaussian Process Implicit Surfaces (GPIS).

Mean Light Transport **(Over All Realizations)**

an implicit surface f:

$$L^{f}(\mathbf{X},\boldsymbol{\omega}) = \int_{S^{f}}$$

where $\rho(\mathbf{x}_s) = \rho(\mathbf{x}_s, -\boldsymbol{\omega}, \boldsymbol{\omega}_s, \mathbf{n}_s) | \mathbf{n}_s \cdot \boldsymbol{\omega}_s |$ is the cosine-weighted BRDF. This equation explains light transport on for a *fixed* surface f.

First, consider the surface rendering equation [Kajiya 1986] in a scene defined by

 $\rho(\mathbf{x}_{s}^{f})L^{f}(\mathbf{x}_{s}^{f},\boldsymbol{\omega}_{s}^{f})d\boldsymbol{\omega}_{s}$

Now, assume that f is a realization of a GP. The ensemble averaged light transport over all realization of f of the GP GP($\mu, k \mid \zeta$) is defined as:

$$\langle L^{f}(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} = \int_{\mathsf{GP}(\mathbf{x})} d\mathbf{x}$$

LT over a single, fixed surface f

$$L^{f}(\mathbf{x},\boldsymbol{\omega}) = \int_{S^{2}} \rho(\mathbf{x}_{s}^{f}) L^{f}(\mathbf{x}_{s}^{f},\boldsymbol{\omega}_{s}^{f}) d\boldsymbol{\omega}_{s}$$

A Monte Carlo estimator for the equation naturally follows as

 $\langle L^{f}(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} \approx \frac{1}{N} \sum_{j=1}^{N} L^{f_{j}}(\mathbf{x},\boldsymbol{\omega}),$

- where $f_i \sim GP(\mu, k | \zeta)$ is one realization of implicit functions implied by the GP.
 - "Iteratively sample f from GP and simulate light transport using MC!"

Experiments (....)

For each sample L^{f_j} , an entire 3D realization of f_j must be constructed! Assume that our GPIS is discretized into a volume of sidelength O(n). What is the time complexity of constructing each f_i ?

$$f \sim \mathsf{GP}\left(\mu_{|\zeta_m}(\mathbf{x}), k_{|\zeta_m}(\mathbf{x}, \mathbf{y})\right), \mathbf{v}$$
$$\mu_{|\zeta_m}(\mathbf{x}) = \mu(\mathbf{x}) + k(\mathbf{x}, C)k(C, C)^{-1}(m)$$
$$k_{|\zeta_m}(\mathbf{x}, \mathbf{y}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, C)k(C, C)$$

HINT

where

- $f(X) = \mu(X) + k(X,X)^{\frac{1}{2}}\eta$
- $^{-1}k(C,\mathbf{x})$

 $-\mu(C)),$

For each sample L^{f_j} , an entire 3D realization of f_i must be constructed! Assume that our GPIS is discretized into a volume of sidelength O(n). What is the time complexity of constructing each f_i ?

$$O(n^9) =$$

Free-flight distributions of f are delta functions for fixed implicit surfaces:

$$L^{f}(\mathbf{x},\boldsymbol{\omega}) = \int_{0}^{\infty} \int \int_{S^{2}} \rho(\mathbf{x}_{t}) dt$$

where
$$\delta^{f}(\mathbf{x}_{t}, \mathbf{n}) = \delta \left(f(\mathbf{x}_{t}) - 0 \right) \cdot \delta$$

$$I^{f}(0,t) = \begin{cases} 1 & \forall \\ 0 & o \end{cases}$$

- $\delta^f(\mathbf{x}_t, \mathbf{n}) I^f(0,t) L^f(\mathbf{x}_t, \boldsymbol{\omega}_t) d\boldsymbol{\omega}_t d\mathbf{n} dt,$

 \bullet

$$\left(\frac{\nabla f(\mathbf{x}_t)}{\|\nabla f(\mathbf{x}_t)\|} - \mathbf{n}\right) \text{ and }$$

 $\forall s \in (0,t) : f(\mathbf{x}_s) > 0$ therwise

can be computed as

$$\langle L^{f}(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} = \int_{0}^{\infty} \int \int_{S^{2}} \rho(\mathbf{x}_{t})\langle$$

where
$$\delta^{f}(\mathbf{x}_{t}, \mathbf{n}) = \delta \left(f(\mathbf{x}_{t}) - 0 \right) \cdot \delta$$

$$I^{f}(0,t) = \begin{cases} 1 & k \\ 0 & 0 \end{cases}$$

Since the BRDF ρ is independent of realizations f, the ensemble-averaged LT

 $\left\langle \delta^{f}(\mathbf{x}_{t},\mathbf{n})I^{f}(0,t)L^{f}(\mathbf{x}_{t},\boldsymbol{\omega}_{t})\right\rangle \zeta d\boldsymbol{\omega}_{t}d\mathbf{n}dt,$

 $S\left(\frac{\nabla f(\mathbf{x}_t)}{\|\nabla f(\mathbf{x}_t)\|} - \mathbf{n}\right) \text{ and }$

 $\forall s \in (0,t) : f(\mathbf{x}_s) > 0$ otherwise

$$\langle L^{f}(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} = \int_{0}^{\infty} \int \int_{S^{2}} \rho(\mathbf{x}_{t})\langle$$

Repeat:

- 1. Sample $f \sim GP(\mu, k | \zeta)$; $\rightarrow O(n^9)$ time complexity
- 2. Compute $L^{f}(\mathbf{x}_{t}, \boldsymbol{\omega}_{t})$ via path tracing;
- 3. Use the path tracing result when evaluating the expectation if,
 - A. \mathbf{x}_t is the point where the ray initially intersects with f (from δ^f and I^f);
 - B. The normal at \mathbf{x}_t is aligned with **n** (from δ^t).

 $\delta^{f}(\mathbf{x}_{t},\mathbf{n})I^{f}(0,t)L^{f}(\mathbf{x}_{t},\boldsymbol{\omega}_{t}) \bigg|_{\zeta} d\boldsymbol{\omega}_{t} d\mathbf{n} dt$

Instead of *filtering* realizations after sampling, we can average over realizations having the required intersection point \mathbf{X}_t and normal \mathbf{n} :

$$\langle L^{f}(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} = \int_{0}^{\infty} \int \int_{S^{2}} \rho(\mathbf{x}_{t})\gamma_{\mathbf{x}_{t}}(0,\mathbf{n} \,|\, \zeta) \Big\langle I^{f}(0,t)L^{f}(\mathbf{x}_{t},\boldsymbol{\omega}_{t}) \Big\rangle_{\zeta \wedge \zeta_{\delta}} d\boldsymbol{\omega}_{t} d\mathbf{n} dt,$$

where $\zeta_{\delta} = \left(f(\mathbf{x}_t) = 0 \land \nabla f(\mathbf{x}_t) / \| \nabla f(\mathbf{x}_t) \| = \mathbf{n} \right)$ and $\gamma_{\mathbf{x}_t}(0, \mathbf{n} | \zeta)$ is the density of sampling realizations that satify the condition ζ_{δ} .

Since $I^{f}(0,t)$ only depends on f over 1D ray segment $(\mathbf{x}, \mathbf{x}_{t})$, we decompose sampling *f* into two steps:

- 1. Sample the values $f_{\mathbf{X},\mathbf{X}_{t}}$ along the ray segment;
- 2. Continue sample f over the remainder of the domain. Theoretically, this decomposition does not alter the statistics of a GP.

The final equation for the ensemble-averaged light transport is

$$\langle L^{f}(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} = \int_{0}^{\infty} \iint_{S^{2}} \rho(\mathbf{x}_{t})\gamma_{\mathbf{x}_{t}}(0,\mathbf{n} \mid \zeta)\langle$$

where $\langle \cdot \rangle_{\gamma}^{(\mathbf{X},\mathbf{X}_t)}$ is the conditioned average over realization restricted to a path segment.

 $\left\langle I^{f}(0,t)\left\langle L^{f}(\mathbf{x}_{t},\boldsymbol{\omega}_{t})\right\rangle_{\zeta\wedge\zeta_{\delta}\wedge\zeta_{(\mathbf{x},\mathbf{x}_{t})}}\right\rangle_{\zeta\wedge\zeta_{\delta}}^{(\mathbf{x},\mathbf{x}_{t})}d\boldsymbol{\omega}_{t}d\mathbf{n}dt$

Key Idea **Memory Models for Rendering Equation Evaluation**

Key Idea **Progressive Sampling via Function-Space GPs**

$$\langle L^{f}(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} = \int_{0}^{\infty} \iint_{S^{2}} \rho(\mathbf{x}_{t})\gamma_{\mathbf{x}_{t}}(0,\mathbf{n} \mid \zeta)\langle$$

$$\langle \widehat{L_i(\mathbf{x}^u,\boldsymbol{\omega})} \rangle_{\zeta} = \frac{\rho(\mathbf{x})}{p(t,t)}$$

 $\left| I^{f}(0,t) \left\langle L^{f}(\mathbf{x}_{t},\boldsymbol{\omega}_{t}) \right\rangle_{\zeta \wedge \zeta_{\delta} \wedge \zeta_{(\mathbf{x},\mathbf{x}_{t})}} \right\rangle_{\zeta \wedge \zeta_{\delta}} d\boldsymbol{\omega}_{t} d\mathbf{n} dt$

 $\begin{array}{l} \mathbf{x}_{t} \Gamma(t, \mathbf{n} \mid \zeta) \\ \mathbf{x}_{t}, \mathbf{n}, \boldsymbol{\omega}_{t}, f_{(\mathbf{X}, \mathbf{X}_{t})} \end{array} \langle \widehat{L_{i}(\mathbf{X}_{t}, \boldsymbol{\omega}_{t})} \rangle_{\zeta}^{\prime}, \\ \mathcal{L}_{i}(\mathbf{X}_{t}, \boldsymbol{\omega}_{t}) \rangle_{\zeta}^{\prime}, \end{array}$

where $t, \mathbf{n}, \boldsymbol{\omega}_t, f_{(\mathbf{X}, \mathbf{X}_t)} \sim p(t, \mathbf{n}, \boldsymbol{w}_t, f_{(\mathbf{X}, \mathbf{X}_t)})$

Appearance Models

Appearance Spaces of GPISes **Joint Distribution of Free-Flight Distances and Normals**

Using the Renewal+, or Renewal models, our rendering equation can be simplified to

$$\langle L(\mathbf{x},\boldsymbol{\omega})\rangle_{\zeta} \approx \int_{0}^{\infty} \iint \rho(\mathbf{x}_{t}) \Gamma(t,\mathbf{n}|\zeta) \left\langle L(\mathbf{x}_{t},\boldsymbol{\omega}_{t})\right\rangle_{\zeta\wedge\zeta'} d\boldsymbol{\omega}_{t} d\mathbf{n} dt,$$
where $\Gamma(t,\mathbf{n}|\zeta) = \gamma_{\mathbf{x}_{t}}(0,\mathbf{n}|\zeta) T(\mathbf{x}_{t}|\zeta)$ with the transmittance
$$T(\mathbf{x}_{t}|\zeta) = \int_{\mathsf{GP}_{(\mathbf{x},\mathbf{x}_{t})}|\zeta\wedge\zeta_{\delta}} I^{f}(0,t) d\gamma \left(f_{(\mathbf{x},\mathbf{x}_{f})}|\zeta\wedge\zeta_{\delta}\right)$$

GPIS Density

Appearance Spaces of GPISes Surface-Type GPISes

Similarly to GPIses, microfacet surfaces are regarded as realizations of a stochastic process (e.g., Beckmann model).

In this framework, it is elegantly derived from $\Gamma(t, \mathbf{n} \mid \boldsymbol{\zeta})$ as

$$D_{v}(\mathbf{n} | \boldsymbol{\omega}) = \int_{0}^{\infty} \Gamma(t, \mathbf{n} | \boldsymbol{\omega}, \zeta) dt,$$

which describes the distribution of normals ${\bf n}$ visible from direction ω .

- One important attribute is the distribution of visible normals (vNDF) $D_v(\mathbf{n} \mid \boldsymbol{\omega})$.

Appearance Spaces of GPISes Surface-Type GPISes

Surface-Type GPISes reproduce existing microfacet model while reducing errors caused by approximations used in classical methods.

Appearance Spaces of GPISes Volume-Type GPISes

This can be also derived from the GPIS density $\Gamma(t, \mathbf{n} \mid \zeta)$

distance t.

The free-flight distribution is the central quantity in volumetric light transport.

```
\Gamma(t \mid \zeta) = \int_{\mathbb{S}^2} \Gamma(t, \mathbf{n} \mid \zeta) d\mathbf{n},
```

which is the probability density of finding the first zero crossing of the GPIS at

Appearance Spaces of GPISes Volume-Type GPISes

Similarly to microfacets, GPISes can reproduce light transport through classical volumetric media by carefully adjusting their mean and covariance.

Now, we consider non-stationary GPISes defined by

- A prior mean function and covariance kernel parameterized with Φ
- A set of conditioning points C with each point $\mathbf{c} \in C$ has
 - A location $\mathbf{c}_{\mathbf{v}}$
 - A value \mathbf{C}_{v}
 - A normal derivative direction $\mathbf{c}_{
 abla}$

Following the definition of GPs introduced earlier, the mean and covariance of the GP are

$$\mu_{\Phi|C}(\mathbf{x}) = \mu_{\Phi}(\mathbf{x}) + k_{\Phi}(\mathbf{x},$$

$$k_{\Phi|C}(\mathbf{x}, \mathbf{y}) = k_{\Phi}(\mathbf{x}, \mathbf{x}) - k_{\Phi}(\mathbf{x}, \mathbf{x})$$

Assuming a zero-mean function, a prior covariance kernel k_{Φ} is the only remaining attribute that determines the apperance of a GPIS.

 $(C_{\mathbf{x}})k_{\Phi}(C_{\mathbf{x}}, C_{\mathbf{x}})^{-1}(C_{\nu} - \mu_{\Phi}(C_{\mathbf{x}})),$

 $k_{\Phi}(\mathbf{X}, C_{\mathbf{x}})k_{\Phi}(C_{\mathbf{x}}, C_{\mathbf{y}})^{-1}k_{\Phi}(C_{\mathbf{x}}, \mathbf{y}).$

The authors employ the non-stationary covariance kernel from [Paciorek and Schervish, 2006]

where

 $Q_{\Phi}(\mathbf{x},\mathbf{y}) = (\mathbf{x} - \mathbf{y})^T$

Local Variance $\sigma_{\Phi}: \mathbb{R}^3 \to \mathbb{R}$

Local Anisotropy $\Sigma_{\Phi}: \mathbb{R}^3 \to \mathbf{S}^3_+$

 $k_{\Phi}^{NS}(\mathbf{x}, \mathbf{y}) = \sigma_{\Phi}(\mathbf{x})\sigma_{\Phi}(\mathbf{y}) \frac{\left|\sum_{\Phi}(\mathbf{x})\right|^{\frac{1}{4}} \left|\sum_{\Phi}(\mathbf{y})\right|^{\frac{1}{4}}}{\left|\sum_{\Phi}(\mathbf{x}) + \sum_{\Phi}(\mathbf{y})\right|^{-\frac{1}{2}}} k_{\Phi}^{S}(\sqrt{Q_{\Phi}(\mathbf{x}, \mathbf{y})}),$

$$\frac{\Sigma_{\Phi}(\mathbf{x}) + \Sigma_{\Phi}(\mathbf{y})}{2} \int^{-1} (\mathbf{x} - \mathbf{y})$$

on a voxel grid and values are retrieved via interpolation.

The SGGX Microflake Distribution, ACM ToG 2015 Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher

Need to remain PSD after interpolation!

The mean, variance, and anisotropy fields, $\mu_{\Phi}(\mathbf{x})$, $\sigma_{\Phi}(\mathbf{x})$, and $\Sigma_{\Phi}(\mathbf{x})$ are stored

Spatially varying kernels allow appearance change within a single object.

Applications of GPISes

Creating and Acquiring GPISes Manual Annotation

Creating and Acquiring GPISes Constructive Solid Geometry (CSG) GPISes also support several CSG operations for intuitive editing.

Sample & Compose

Fit to a GPIS

Stochastic Poisson Surface Reconstruction The proposed rendering algorithm can be used to visualize stochastic implicit surfaces reconstructed via SPSR [Sellán and Jacobson, 2022].

Filtering Implicit Surfaces An implicit function $f(\mathbf{x})$ can be fitted to a Gaussian process that is most likely to sample it to improve efficiacy.

Input Function

Residual

Residual (Freq.)

Reconstruction (Freq.)

Filtering Implicit Surfaces Compaired to maximum likelihood estimation that only captures the mean function, GPISes capture high-frequency details by fitting covariances.

Filtering Implicit Surfaces Alternative optimization objectives, such as appearance-based losses, can be used to recover GPIS parameters from images via differentiable rendering.

A Non-Exponential Transmittance Model for Volumetric Scene Representations, ACM ToG 2021 Delio Vicini, Wenzel Jakob, and Anton Kaplanyan

Discussion

Limitations

- Rendering implicit surfaces, including GPISes, are **typically slower** than rendering triangular meshes;
- Does not extend to **differentiable rendering** due to the lack of analytic expressions for transmittance and normal distributions;
- Texture mapping is non-trivial due to complex parameterization;
- Choice of step sizes along ray marching may impact rendering quality;

Conclusion

- surfaces which is significantly faster than a naive implementation;
- Proposes an approximate, yet reasonable memory model to trade-off accuracy and performance;
- types, as well as those existing models struggle to handle;
- Showcases various applications where the proposed algorithm can be potentially useful.

- Proposes a novel Monte Carlo rendering algorithm for stochastic implicit

- Demonstrates the capability of GPISes in representing widely used geometry

From Microfacets to Participating Media: A Unified Theory of Light Transport with Stochastic Geometry

Dario Seyb, Eugene D'eon, Benedikt Bitterli, Wojciech Jarosz ACM ToG 2024 (Best Paper Award)

Seungwoo Yoo, KAIST Visual AI Group