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Prologue



Prologue: Light Transport Theory in CG
Simulating the behavior of light in a 3D space is crucial in photorealistic 
rendering, and numerous techniques have been developed over the decades.

Physically Based Rendering: From Theory To Implementation (4th edition) 
Matt Pharr, Wenzel Jakob, and Greg Humphreys

Cotton Candy 
Chenlin Meng, Hubert Teo, and Jiren Zhu



Prologue: Light Transport Theory in CG
Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under 
various conditions including geometry, lighting, and material properties.

Lo (x, ωo, λ, t) = Le (x, ωo, λ, t) + Lr (x, ωo, λ, t)
“The radiance from a point is the sum of the radiance emitted and reflected at the point.”



Prologue: Light Transport Theory in CG

Lo (x, ωo, λ, t) = Le (x, ωo, λ, t) + Lr (x, ωo, λ, t)

Lr (x, ωo, λ, t) = ∫Ω
fr (x, ωi, ωo, λ, t) Li (x, ωi, λ, t) (ωi ⋅ n) dωi

Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under 
various conditions including geometry, lighting, and material properties.

“The reflected radiance is the sum of all incoming radiance, each weighted by a BRDF.”



Prologue: Light Transport Theory in CG

Lo (x, ωo, λ, t) = Le (x, ωo, λ, t) + Lr (x, ωo, λ, t)

Lr (x, ωo, λ, t) = ∫Ω
fr (x, ωi, ωo, λ, t) Li (x, ωi, λ, t) (ωi ⋅ n) dωi

The rendering equation is recursive by definition.

Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under 
various conditions including geometry, lighting, and material properties.



Prologue: Light Transport Theory in CG

Lo (x, ωo, λ, t) = Le (x, ωo, λ, t) + Lr (x, ωo, λ, t)

Lr (x, ωo, λ, t) = ∫Ω
fr (x, ωi, ωo, λ, t) Li (x, ωi, λ, t) (ωi ⋅ n) dωi

The rendering equation is an integral equation.

Existing rendering algorithms solve the rendering equation [Kajiya, 1986], under 
various conditions including geometry, lighting, and material properties.



Prologue: Light Transport Theory in CG
However, solving the rendering equation demands substantial computational 
resources due to the need for recursive integral evaluations.

∫Ω
fr (x, ωi, ωo, λ, t) Li (x, ωi, λ, t) (ωi ⋅ n) dωi

For all ray direction ’s over a unit hemisphere , 
evaluate the BRDF  and incoming radiance .

ωi Ω
fr Li

Rendering Equation 
Wikipedia

😵



Prologue: Light Transport Theory in CG
Complex, recursive integrals in the rendering equation is estimated using the 
Monte Carlo method involving random sampling.

∫
b

a
f(x)dx

The MC estimator for the integral is:

Fn =
b − a

n

n

∑
i=1

f(Xi)

where . The estimator is unbiased. That is,  and 

its estimate converges to the true value of the integral in average.

Xi ∼ U(a, b) 𝔼[Fn] = ∫
b

a
f(x)dx



Prologue: Light Transport Theory in CG
Ray tracers are programs that merely compute the MC estimate of the solutions 
of the rendering equation by recursively tracing rays starting from image pixels.

The path to path-traced movies, Foundations and Trends in Computer Graphics and Vision 2016 
Per H. Christensen and Wojciech Jarosz



Prologue: Light Transport Theory in CG

Importance Sampling Acceleration Structures

Control VariatesBRDF Acquisition

Subsurface Scattering Denoising

Path Space Inverse Rendering

… and more!



Rendering Distributions of Surfaces



Motivation
The current light transport theory handles hard surfaces and volumetric 
participating media differently, struggling to model categories that lie in-between.

“Reflections” – A Star Wars UE4 Real-Time Ray Tracing Cinematic Demo 
Epic Games, ILMxLAB, and NVIDIA

A radiative transfer framework for non-exponential media, ACM ToG 2018 
Benedikt Bitterli, Srinath Ravichandran, Thomas Müller, Magnus 
Wrenninge, Jan Novák, Steve Marschner, and Wojciech Jarosz



Motivation
This paper introduces a unified light transport theory of surface and 
participating media, which extends to a wider range of geometry types.

Volumetric In-Betweens Surface



In a Nutshell…
This paper proposes to represent objects as stochastic implicit surfaces, 
specified by means and covariances of Gaussian Processes (GPs).



⚠
Heavy Math Ahead!

There “will” be errors. 
Feel free to interrupt me if you have questions.



Background & Notation

A Gaussian process  is a distribution over functions  such 
that for any finite set of locations , the evaluations of the 
function follow an -dimensional Gaussian distribution

GP(μ, k)Ω f : Ω → ℝ
x1, …, xn = X ⊆ Ω

n

fX ∼ 𝒩 (μ (X), k (X, X))
where  is an -dimensional mean vector and 

 is an  covariance matrix, with entries .  

The functions  and  are denoted the mean function and covariance kernel, 
respectively.

μ (X) = [μ (x1), …, μ (xn)]T n
k (X, X) n × n k(X, X)i,j = k(xi, xj)

μ k

Gaussian Processes



Background & Notation

Realization 1  
(LP)

Realization 2  
(LP)

Realization 1  
(SE)

Realization 1  
(SE)

 Prior Mean

Gaussian Processes



Background & Notation

Kernel functions determine the shape of GPs and serve as a design variable for 
GPs. A kernel describes how similar values are at nearby points in space.

Covariance Kernel Functions

Positive Semi-Definite Closed under Multiplication and Addition

In this work, we are interested in particular types of kernels:

Stationary Kernels: k(x, y) = k(y − x)

Isotropic Kernels:  k(x, y) = k(∥y − x∥)

Non-Stationary Kernels:   Tricky, but useful!k(x, y) ≠ k(y − x) →



Background & Notation

The input domain of a GP can be restricted without altering its statistics. We are 
interested in restricting the domain to points on a line  

from the entire 3D space . In general, 

xℝ = {x + tω | t ∈ ℝ}
ℝ3

f (xℝ) = g(xℝ)

holds for  and . This property allows us to evaluate 
GPs on low-dimensional slices without changing the mean or covariance kernel.

f ∼ GP(μ, k)ℝ3 g ∼ GP(μ, k)xℝ

Restricting Domains of Gaussian Processes



Background & Notation

Given the location(s) of point(s) on the graphs of functions sampled from a GP, 
we can conditionally sample such functions that pass through the point(s).

Conditioned Processes

 where 

, 

f ∼ GP (μ|ζm
(x), k|ζm (x, y)),

μ|ζm
(x) = μ(x) + k(x, C)k(C, C)−1(m − μ(C))

k|ζm
(x, y) = k(x, x) − k(x, C)k(C, C)−1k(C, x)

Conditional sampling involves computing matrix inverse , which has 
 time complexity with  observations.

k(C, C)−1

𝒪(n3) n



Background & Notation

Posterior Mean 
(SE)

Observation 2
Conditioned Processes

Observation 1

Posterior Mean 
(LP)



Background & Notation
Sampling from GPs

Samples at a set of points  can be drawn from a  viaX GP(μ, k)

f(X) = μ(X) + k(X, X)1
2η

where  and  is the matrix square root. This computation has also 
time complexity  where .

η ∼ 𝒩(0,I) A
1
2

𝒪(p3) p = |X |



Background & Notation
Derivatives of GPs
Thanks to the linearity of the derivative operator, the derivative of a GP is another 
GP:

GP′￼(μ (x), k (x, y)) = GP (μ′￼(x), kx,y (x, y))
where .kx,y(x, y) =

∂2k(x, y)
∂x∂y



Background & Notation
Derivatives of GPs

Furthermore, the joint value-derivative distribution can be computed as:

[ f(X)
f′￼(Y)] ∼ 𝒩 ([μ(X)

μ′￼(Y)], [
k(X, X) ky(X, Y)
kx(Y, X) kx,y(Y, Y)])

This property will be later exploited when we consider distributions of normal 
vectors on surfaces derived from GPs.



Background & Notation
Implicit Surfaces

Each function sampled from a GP represents an implicit surface





where  is the signed distance from  to the closest surface point.

f : Ω → ℝ, {x ∈ Ω | f (x) = l}
l x

Computing an intersection between a ray and the surface is equivalent to finding 
the ray distance  such that . More precisely,
s f(x + sω) = 0

s = argmint∈ℝ+ f(xt) = 0



Background & Notation
Implicit Surfaces
The normal vector at the intersection  can be easily computed as 
xs

ns =
∇f(xs)

∥∇f(xs)∥

A Dataset and Explorer for 3D Signed Distance Functions, i3D 2022 
Towaki Takikawa, Andrew Glassner, and Morgan McGuire



Background & Notation
Stochastic Implicit Surfaces

A stochastic implicit surface (SIS) is the distribution of level sets defined by a 
stochastic process. Our interest is Gaussian Process Implicit Surfaces (GPIS).

Light Transport 
(Mean Implicit Surface)

Mean Light Transport 
(Over All Realizations)



Key Idea
Ensemble-Averaged Light Transport in GPISes

First, consider the surface rendering equation [Kajiya 1986] in a scene defined by 
an implicit surface :


,

f

Lf(x, ω) = ∫S2

ρ(xf
s)Lf(xf

s, ω f
s )dωs

where  is the cosine-weighted BRDF. 
This equation explains light transport on for a fixed surface .

ρ(xs) = ρ(xs, − ω, ωs, ns) |ns ⋅ ωs |
f



Key Idea
Ensemble-Averaged Light Transport in GPISes

Now, assume that  is a realization of a GP. The ensemble averaged light 
transport over all realization of  of the GP  is defined as:


,

f
f GP(μ, k |ζ)

⟨Lf(x, ω)⟩ζ = ∫GP(μ,k|ζ)
Lf(x, ω)dγμ,k( f |ζ)

Lf(x, ω) = ∫S2

ρ(xf
s)Lf(xf

s, ω f
s )dωs

LT over a single, fixed surface f
Probability density of f ∼ GP(μ, k |ζ)



Key Idea
Ensemble-Averaged Light Transport in GPISes

A Monte Carlo estimator for the equation naturally follows as


,⟨Lf(x, ω)⟩ζ ≈
1
N

N

∑
j=1

Lfj(x, ω)

where  is one realization of implicit functions implied by the GP.fj ∼ GP(μ, k |ζ)

“Iteratively sample  from GP and simulate light transport using MC!”f

🤩



Experiments (…🤔)



Key Idea
Ensemble-Averaged Light Transport in GPISes

For each sample , an entire 3D realization of  must be constructed! 

Assume that our GPIS is discretized into a volume of sidelength . 
What is the time complexity of constructing each ?

Lfj fj
𝒪(n)

fj

 where 

, 

f ∼ GP (μ|ζm
(x), k|ζm (x, y)),

μ|ζm
(x) = μ(x) + k(x, C)k(C, C)−1(m − μ(C))

k|ζm
(x, y) = k(x, x) − k(x, C)k(C, C)−1k(C, x)

f(X) = μ(X) + k(X, X)1
2η

HINT



Key Idea
Ensemble-Averaged Light Transport in GPISes

For each sample , an entire 3D realization of  must be constructed! 

Assume that our GPIS is discretized into a volume of sidelength . 
What is the time complexity of constructing each ?

Lfj fj
𝒪(n)

fj

O(n9) = O ((n3)3)



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes

Free-flight distributions of  are delta functions for fixed implicit surfaces:


,


where  and


f

Lf(x, ω) = ∫
∞

0 ∫ ∫S2

ρ(xt)δ f(xt, n)If(0,t)Lf(xt, ωt)dωtdndt

δ f(xt, n) = δ (f (xt) − 0) ⋅ δ (
∇f (xt)

∥∇f (xt) ∥
− n)

If(0,t) = {1 ∀s ∈ (0,t) : f(xs) > 0
0 otherwise

.



Key Idea
Ensemble-Averaged Light Transport in GPISes

Since the BRDF  is independent of realizations , the ensemble-averaged LT 
can be computed as


,


where  and


ρ f

⟨Lf(x, ω)⟩ζ = ∫
∞

0 ∫ ∫S2

ρ(xt)⟨δ f(xt, n)If(0,t)Lf(xt, ωt)⟩ζdωtdndt

δ f(xt, n) = δ (f (xt) − 0) ⋅ δ (
∇f (xt)

∥∇f (xt) ∥
− n)

If(0,t) = {1 ∀s ∈ (0,t) : f(xs) > 0
0 otherwise

.



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes

⟨Lf(x, ω)⟩ζ = ∫
∞

0 ∫ ∫S2

ρ(xt)⟨δ f(xt, n)If(0,t)Lf(xt, ωt)⟩ζdωtdndt

Repeat:

1. Sample ; →  time complexity 

2. Compute  via path tracing;


3. Use the path tracing result when evaluating the expectation if,

A.  is the point where the ray initially intersects with  (from  and );


B. The normal at  is aligned with  (from ).

f ∼ GP(μ, k |ζ) 𝒪(n9)

Lf(xt, ωt)

xt f δ f If

xt n δ f



Key Idea
Ensemble-Averaged Light Transport in GPISes

Instead of filtering realizations after sampling, we can average over realizations 
having the required intersection point  and normal :


,


where  and  is the density 

of sampling realizations that satifsy the condition .

xt n

⟨Lf(x, ω)⟩ζ = ∫
∞

0 ∫ ∫S2

ρ(xt)γxt
(0,n |ζ)⟨If(0,t)Lf(xt, ωt)⟩ζ∧ζδ

dωtdndt

ζδ = (f (xt) = 0 ∧ ∇f(xt)/∥∇f(xt)∥ = n) γxt
(0,n |ζ)

ζδ



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes

Since  only depends on  over 1D ray segment , we decompose 
sampling  into two steps:


1. Sample the values  along the ray segment;


2. Continue sample  over the remainder of the domain.


Theoretically, this decomposition does not alter the statistics of a GP.

If(0,t) f (x, xt)
f

fx,xt

f



Key Idea
Ensemble-Averaged Light Transport in GPISes

The final equation for the ensemble-averaged light transport is


⟨Lf(x, ω)⟩ζ = ∫
∞

0 ∫ ∫S2

ρ(xt)γxt
(0,n |ζ)⟨If (0,t) ⟨Lf (xt, ωt)⟩ζ∧ζδ∧ζ(x,xt)⟩

(x,xt)

ζ∧ζδ

dωtdndt

where  is the conditioned average over realization restricted to a path 

segment.

⟨ ⋅ ⟩(x,xt)
ζ

𝒪(m3)



Key Idea
Ensemble-Averaged Light Transport in GPISes
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Ensemble-Averaged Light Transport in GPISes



Key Idea
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Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes



Key Idea
Ensemble-Averaged Light Transport in GPISes

Need to remember GP statistics  
at path vertices (Cost ) }



Key Idea
Ensemble-Averaged Light Transport in GPISes

Forget some previous segments! }



Key Idea
Memory Models for Rendering Equation Evaluation

✅❌✅



Key Idea
Progressive Sampling via Function-Space GPs

⟨Lf(x, ω)⟩ζ = ∫
∞

0 ∫ ∫S2

ρ(xt)γxt
(0,n |ζ)⟨If (0,t) ⟨Lf (xt, ωt)⟩ζ∧ζδ∧ζ(x,xt)⟩

(x,xt)

ζ∧ζδ

dωtdndt

 

where 

̂⟨Li(xu, ω)⟩ζ =
ρ(xt)Γ(t, n |ζ)

p(t, n, ωt, f(x,xt))
̂⟨Li(xt, ωt)⟩′￼ζ,

t, n, ωt, f(x,xt) ∼ p(t, n, wt, f(x,xt))



Appearance Models



Appearance Spaces of GPISes
Joint Distribution of Free-Flight Distances and Normals

Using the Renewal+, or Renewal models, our rendering equation can be 
simplified to





where  with the transmittance


⟨L (x, ω)⟩ζ ≈ ∫
∞

0 ∫ ∫ ρ (xt) Γ (t, n |ζ) ⟨L (xt, ωt)⟩ζ∧ζ′￼

dωtdndt,

Γ (t, n |ζ) = γxt (0,n |ζ) T (xt |ζ)

T(xt |ζ) = ∫GP(x,xt)|ζ∧ζδ

If (0,t) dγ (f(x,xf) |ζ ∧ ζδ)

GPIS Density



Appearance Spaces of GPISes
Surface-Type GPISes

Similarly to GPIses, microfacet surfaces are regarded as realizations of a 
stochastic process (e.g., Beckmann model).


One important attribute is the distribution of visible normals (vNDF) . 
In this framework, it is elegantly derived from  as


,


which describes the distribution of normals  visible from direction .

Dv(n |ω)
Γ(t, n |ζ)

Dv(n |ω) = ∫
∞

0
Γ (t, n |ω, ζ) dt

n ω



Appearance Spaces of GPISes
Surface-Type GPISes

Surface-Type GPISes reproduce existing microfacet model while reducing errors 
caused by approximations used in classical methods.



Appearance Spaces of GPISes
Volume-Type GPISes

The free-flight distribution is the central quantity in volumetric light transport. 
This can be also derived from the GPIS density 


,


which is the probability density of finding the first zero crossing of the GPIS at 
distance .

Γ(t, n |ζ)

Γ(t |ζ) = ∫S2

Γ(t, n |ζ)dn

t



Appearance Spaces of GPISes
Volume-Type GPISes

Similarly to microfacets, GPISes can reproduce light transport through classical 
volumetric media by carefully adjusting their mean and covariance.



Non-Stationary GPIS Models
A Non-Stationary Kernel

Now, we consider non-stationary GPISes defined by


- A prior mean function and covariance kernel parameterized with 


- A set of conditioning points  with each point  has


- A location 


- A value 


- A normal derivative direction 

Φ

C c ∈ C

cx

cv

c∇



Non-Stationary GPIS Models
A Non-Stationary Kernel

Following the definition of GPs introduced earlier, the mean and covariance of 
the GP are


,


.


Assuming a zero-mean function, a prior covariance kernel  is the only 
remaining attribute that determines the apperance of a GPIS.

μΦ|C(x) = μΦ(x) + kΦ(x, Cx)kΦ(Cx, Cx)−1(Cv − μΦ(Cx))

kΦ|C(x, y) = kΦ(x, x) − kΦ(x, Cx)kΦ(Cx, Cx)−1kΦ(Cx, y)

kΦ



Non-Stationary GPIS Models
A Non-Stationary Kernel

The authors employ the non-stationary covariance kernel from [Paciorek and 
Schervish, 2006]





where


kNS
Φ (x, y) = σΦ(x)σΦ(y)

|ΣΦ(x) |
1
4 |ΣΦ(y) |

1
4

|
ΣΦ(x) + ΣΦ(y)

2 |− 1
2

kS
Φ( QΦ(x, y)),

QΦ(x, y) = (x − y)T(
ΣΦ (x) + ΣΦ (y)

2 )
−1

(x − y)

Local Variance 
σΦ : ℝ3 → ℝ

Local Anisotropy 
ΣΦ : ℝ3 → S3

+



Non-Stationary GPIS Models
A Non-Stationary Kernel

The mean, variance, and anisotropy fields, , , and  are stored 
on a voxel grid and values are retrieved via interpolation.

μΦ(x) σΦ(x) ΣΦ(x)

The SGGX Microflake Distribution, ACM ToG 2015 
Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher

Need to remain PSD 
after interpolation!



Non-Stationary GPIS Models
A Non-Stationary Kernel
Spatially varying kernels allow appearance change within a single object.



Applications of GPISes



Creating and Acquiring GPISes
Similarly to classical scene components (e.g., meshes), GPISes can be manually 
annotated by manipulating the mean and covariance over a volume.

Manual Annotation



Creating and Acquiring GPISes
GPISes also support several CSG operations for intuitive editing.

Sample & Compose Fit to a GPIS

Constructive Solid Geometry (CSG)



Stochastic Poisson Surface Reconstruction
The proposed rendering algorithm can be used to visualize stochastic implicit 
surfaces reconstructed via SPSR [Sellán and Jacobson, 2022].



Filtering Implicit Surfaces
An implicit function  can be fitted to a Gaussian process that is most likely to 
sample it to improve efficiacy.

f(x)

Input Function Residual Residual (Freq.) Reconstruction (Freq.)



Filtering Implicit Surfaces
Compaired to maximum likelihood estimation that only captures the mean 
function, GPISes capture high-frequency details by fitting covariances.



Filtering Implicit Surfaces
Alternative optimization objectives, such as appearance-based losses, can be 
used to recover GPIS parameters from images via differentiable rendering.

A Non-Exponential Transmittance Model for Volumetric Scene Representations, ACM ToG 2021 
Delio Vicini, Wenzel Jakob, and Anton Kaplanyan



Discussion



Limitations
- Rendering implicit surfaces, including GPISes, are typically slower than 

rendering triangular meshes;


- Does not extend to differentiable rendering due to the lack of analytic 
expressions for transmittance and normal distributions;


- Texture mapping is non-trivial due to complex parameterization;


- Choice of step sizes along ray marching may impact rendering quality;



Conclusion
- Proposes a novel Monte Carlo rendering algorithm for stochastic implicit 

surfaces which is significantly faster than a naive implementation;


- Proposes an approximate, yet reasonable memory model to trade-off 
accuracy and performance;


- Demonstrates the capability of GPISes in representing widely used geometry 
types, as well as those existing models struggle to handle;


- Showcases various applications where the proposed algorithm can be 
potentially useful.
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