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초 록

본 학위논문에서는 데이터로부터 학습된 사전 지식을 활용하여 3차원 메쉬로 표현된 형상들을 변형하
는 연구인 Neural Pose Representation Learning과 As-Plausible-As-Possible을 제안한다. 자연어 문장이나
사진과 달리 3차원 메쉬는 제작 과정의 복잡함으로 인해 대량의 데이터를 수집하는 것이 어렵기 때문에,
기존 데이터 기반 방법론은 충분한 데이터가 확보된 형상들에 대해서만 적용 가능하다는 한계를 가지고

있다. 이러한 문제를 해결하기 위해 본 논문에서는 단 하나의 형상과 해당 형상의 여러 변형 예시가 주어졌
을 때 이 예시들을 다른 형상으로 전이하는 데 특화된 Neural Pose Representation과 이를 학습, 활용하기
위한 프레임워크를 제시한다. 새로이 제안된 Neural Pose Representation은 3차원 공간 상의 키포인트와
신경망이 예측한 특징 벡터로 구성되어 있으며, 메쉬의 국소적 변형을 표현하는 야코비 행렬을 예측하는 데
활용된다. 나아가 본 논문은 다량의 이미지로부터 학습된 2차원 확산 모델과 야코비장 기반 형상 표현을
결합한 As-Plausible-As-Possible을 통해 3차원 형상 예제 없이 학습 기반의 사전 지식을 활용하는 방법을
제안한다. 이때, As-Plausible-As-Possible은 사전 학습된 확산 모델을 활용해 계산된 손실 함수를 최소화하
도록 야코비장을 변화시킴으로써 효과적으로 메쉬를 변형한다. 본 논문에 제시된 실험 결과는 제한된 수의
3차원 형상 데이터나 사진과 같은 타 도메인 데이터를 활용해 학습된 모델로부터 얻은 사전 지식만으로도
메쉬를 사실적으로 변형할 수 있음을 시사한다. 본 학위논문은 학위청구자가 주저자로 작성하여 출판한
논문 [114, 115]에 기초하여 작성되었다.

핵 심 낱 말 메쉬 변형, 자세 전이, 생성 모델, 컴퓨터 그래픽스, 컴퓨터 비전, 딥러닝

Abstract
We introduce Neural Pose Representation and As-Plausible-As-Possible, two novel methods for deforming
3D meshes by leveraging prior knowledge derived from data. Unlike text and image datasets, the creation
of large-scale 3D mesh datasets is inherently challenging, which limits existing data-driven techniques to
shape categories with sufficient training examples. To address this limitation, we first propose Neural
Pose Representation, a framework designed for transferring object poses using only a single shape and
its pose variations. This method employs a set of 3D keypoints and their associated neural features to
predict local deformations represented as Jacobian matrices. For scenarios where no 3D shape exemplar
is available, we introduce As-Plausible-As-Possible, which combines a pretrained 2D diffusion model with
a shape representation based on Jacobian fields. This approach enables mesh deformation by leveraging
a prior learned from data other than 3D shape examples. As-Plausible-As-Possible deforms the mesh by
iteratively updating a Jacobian field representing a mesh while minimizing the loss function computed
using a pretrained diffusion model. Experimental results demonstrate the effectiveness of leveraging
prior knowledge, either learned from a limited number of 3D shape examples or from a pretrained model
trained on data from other domains, such as 2D images, in generating realistic mesh deformations. This
thesis is written based on two published papers [115, 114] that the candidate wrote as the first author.

Keywords Mesh Deformation, Pose Transfer, Generative Models, Computer Graphics, Computer Vi-
sion, Deep Learning
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Chapter 1. Introduction

Techniques for editing triangular meshes have attracted interest from the research community, given the
fundamental role of mesh representation in the computer graphics pipeline. Early studies grounded in
geometric priors have led to well-established methods for mesh editing, including mesh deformation [91,
90, 102] and deformation transfer [24, 92, 7]. These techniques are successfully integrated into modern
graphics applications, offering human artists efficient and intuitive control over meshes.

While methods based on geometric priors are straightforward to understand and implement, these
handcrafted priors often fail to produce the desired deformations due to their inability to account for
surface properties that are difficult to capture solely using geometric or physically-based formulations.
Motivated by the success of deep learning, recent approaches have proposed learning deformation priors
by leveraging large-scale shape datasets [11, 17], which contain hundreds or even thousands of shape
examples. These learned priors [39, 61] demonstrate superior performance over those relying on geometric
priors, particularly in capturing category-specific shape variations.

However, collecting 3D shapes and their deformed examples for training learning-based frameworks
remains a significant challenge, posing a major barrier to replicating the success achieved in domains
like text and images. As a result, the application of these techniques is often limited to shape categories
with sufficient training examples. This challenge becomes even more severe in real-world scenarios where
human artists often craft unique object designs or characters.

To address this, we move toward leveraging learned priors in a data-efficient manner, requiring only
a few variations of a single shape or even no 3D shape examples. We begin by introducing Neural Pose
Representation (NPR) in Ch. 2, a novel pose representation that facilitates pose generation and transfer
of non-rigid objects, which can be learned using only a single shape and its multiple pose variations. The
proposed representation effectively disentangles poses from identity-specific surface details, representing
a pose as explicit 3D keypoints, each augmented with neural features derived from intrinsic surface
properties. This hybrid design strengthens the transferability and generalizability of our representation
by enabling distance-based queries, which are crucial for predicting implicit deformation fields represented
as Jacobian fields [3] that deform a shape according to the given pose exemplars. Furthermore, the
compactness of the pose representation facilitates diffusion model training [30, 88, 89, 77, 50], and
when combined with its transferability, enables the generative modeling of poses across various shapes.
Our extensive evaluations on animal [54] and human body [63] shape datasets demonstrate superior
performance compared to learning-based baselines.

As our next step, we address an even more challenging scenario where no 3D shape examples
are available for training priors in Ch. 3. Our key idea to this seemingly paradoxical problem is to
distill the prior knowledge of a 2D diffusion model [77], trained on an Internet-scale dataset [80] by
bridging the gap between the 2D image space and 3D geometry using a differentiable renderer [51]. This
approach allows us to replace geometric deformation energies [91, 59, 90] with an image-based loss [71]
defined using the 2D diffusion model that assesses the realism of the deformed object’s image. Similar
to geometric deformation techniques [91, 59, 90], we optimize this loss to produce shape deformations
that, when rendered, closely resemble the images used to train the diffusion model. This idea has been
infused into the design of As-Plausible-As-Possible (APAP), our novel mesh deformation framework that
incorporates visual plausibility in shape manipulation. Specifically, APAP iteratively updates the given
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shape while minimizing the image-based loss [71] to improve visual plausibility, along with a geometric
loss that enforces user-defined handle constraints. During deformation, we employ the Jacobian field [3]
of the input shape as an optimization variable and update it using gradients from the loss functions to
preserve geometric details throughout the process. Comparisons with a baseline [90] that relies solely
on geometric energy show the effectiveness of utilizing the prior learned by a 2D diffusion model, as
highlighted by the highest k-NN GIQA score [25] and greater preference in a user study.

2



Chapter 2. Neural Pose Representation Learning

2.1 Introduction

Figure 2.1: Results of motion sequence transfer (left) and shape variation generation (right) using the
proposed neural pose representation. On the left, poses from source shapes (first and third rows) are
transferred to target shapes (second and fourth rows), preserving intricate details like horns and antlers.
On the right, new poses sampled from a cascaded diffusion model, trained with shape variations of the
bunny (last column), are transferred to other animal shapes.

The recent great success of generative models [30, 88, 89, 87] has been made possible not only due to
advances in techniques but also due to the enormous scale of data that has become available, such as
LAION [79] for 2D image generation. For 3D data, the scale has been rapidly increasing, as exemplified
by ObjaverseXL [15]. However, it is still far from sufficient to cover all possible 3D shapes, particularly
deformable, non-rigid 3D shapes such as humans, animals, and characters. The challenge with deformable
3D shapes is especially pronounced due to the diversity in both the identities and poses of the objects.
Additionally, for a new 3D character created by a designer, information about possible variations of the
creature does not even exist.

To remedy the requirement of a large-scale dataset for 3D deformable shape generation, we aim to
answer the following question: Given variations of a single deformable object with its different poses,
how can we effectively learn the pose variations while factoring out the object’s identity and also make
the pose information applicable to other objects? For instance, when we have a variety of poses of a bear
(Fig. 2.1 left, first row), our objective is to learn the space of poses without entangling them with the
geometric characteristics of the bears. Also, we aim to enable a sample from this space to be applied to
a new object, such as a bull, to generate a new shape (Fig. 2.1 left, second row). We believe that such
a technique, effectively separating pose from the object’s identity and enabling the transfer of poses to
other identities, can significantly reduce the need for collecting large-scale datasets covering the diversity
of both object identities and poses. This approach can even enable creating variations of a new creature
without having seen any possible poses of that specific object.

Transferring poses from one object to another has been extensively studied in computer graphics
and vision, with most methods requiring target shape supervision [92, 8, 111, 7, 22] or predefined pose
parameterization [24, 14, 52, 93, 4, 110, 75, 18, 99, 40, 56, 98, 13]. Without such additional supervision,
our key idea for extracting identity-agnostic pose information and learning their variations is to introduce
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a novel pose representation along with associated encoding and decoding techniques. For this, we consider
the following three desiderata:

1. Pose Disentanglement: The representation should effectively represent the pose only without
resembling the source object’s identity when applied to the other object.

2. Compactness: The representation should be compact enough to effectively learn its variation
using a generative model, such as a diffusion model.

3. Transferability: The encoded pose information should be applicable to new target objects.

As a representation that meets the aforementioned criteria, we propose an autoencoding framework
and a latent diffusion model with three core components. Firstly, we design a pose extractor and a pose
applier to encode an implicit deformation field with a keypoint-based hybrid representation,
comprising 100 keypoints in the space, each associated with a latent feature. Learning the deformation
field enables disentangling the pose information from the object’s identity, while the keypoint-based
representation compactly encodes it and makes it transferable to other objects. However, simply learning
the deformation as a new position of the vertex is not sufficient to properly adapt the source object’s pose
information to others. Hence, secondly, we propose predicting an intrinsic property of the deformed
mesh, Jacobian fields [116, 59, 91, 3], which can successfully apply the pose while preserving the
identity of the target shape. To better preserve the target’s identity while applying the pose variation
from the source, thirdly, we propose a per-identity refinement step that fine-tunes the decoder in a
self-supervised way to adapt to the variations of target shapes, with poses transferred from the source
object. Thanks to the compact hybrid representation of pose, a pose generative model can also be
effectively learned using cascaded diffusion models [31, 50], enabling the generation of varying poses
of an object with an arbitrary identity different from the source object.

In our experiments, we compare our framework against state-of-the-art techniques for pose transfer
on animals (Sec. 2.4.2) and humans (Sec. 2.4.3). Both qualitative and quantitative analyses underscore
the key design factors of our framework, demonstrating its efficiency in capturing identity-agnostic poses
from exemplars and its superior performance compared to existing methods. Additionally, we extend the
proposed representation to the task of unconditional generation of shape variations. Our representation
serves as a compact encoding of poses that can be generated using diffusion models (Sec. 2.4.6) and
subsequently transferred to other shapes. This approach facilitates the generation of various shapes,
particularly in categories where exemplar collection is challenging.

2.2 Related Work

Due to space constraints, we focus on reviewing the literature on non-rigid shape pose transfer, including
methods that operate without parameterizations, those that rely on predefined parameterizations, and
recent learning-based techniques that derive parameterizations from data.

Parameterization-Free Pose Transfer. Early works [92, 107, 8, 111] focused on leveraging point-
wise correspondences between source and target shapes. A seminal work by Sumner and Popović [92]
transfers per-triangle affine transforms applied to the target shape by solving an optimization problem.
A follow-up work by Ben-Chen et al. [8] transfers deformation gradients by approximating source
deformations using harmonic bases. On the other hand, a technique proposed by Baran et al. [7] instead

4



employs pose-wise correspondences by learning shape spaces from given pairs of poses shared across the
source and target identities. The poses are transferred by blending existing exemplars. While these
techniques require point-wise or pose-wise correspondence supervision, our method does not require such
supervision during training or inference.

Skeleton- or Joint-Based Pose Transfer. Another line of work utilizes handcrafted skeletons, which
facilitate pose transfer via motion retargeting [24]. This approach has been extended by incorporating
physical constraints [14, 52, 93, 4] or generalizing the framework to arbitrary objects [110, 75]. Several
learning-based methods [18, 99, 40, 56, 98] have also been proposed to predict joint transformations
involved in forward kinematics from examples. Recently, Chen et al. [13] proposed a framework that
does not require skeletons during test time by predicting keypoints at joints. The method is trained to
predict both relative transformations between corresponding keypoints in two distinct kinematic trees and
skinning weights. However, the tasks of rigging and skinning are labor-intensive, and different characters
and creatures often require distinct rigs with varying topologies. Liao et al. [55] notably presented
a representation that comprises character-agnostic deformation parts and a semi-supervised network
predicting skinning weights that link each vertex to these deformation parts, although its performance
hinges on accurate skinning weight prediction. In this work, we design a more versatile framework that
is applicable to various shapes and provides better performance.

Pose Transfer via Learned Parameterization. To bypass the need for correspondence or param-
eterization supervision, learning-based approaches [22, 113, 101, 122, 12, 3, 55, 100, 85, 86] explore
alternative parameterizations learned from exemplars. Yifan et al. [113] propose to predict source
and target cages and their offsets simultaneously, although their method still requires manual landmark
annotations. Gao et al. [22] introduce a VAE-GAN framework that takes unpaired source and tar-
get shape sets, each containing its own set of pose variations. The network is trained without direct
pose-wise correspondences between samples from these sets, instead enforcing cycle consistency between
latent representations. Although this work relaxes the requirement for correspondence supervision, it
still requires pose variations for both the source and target identities and individual training for each new
source-target pair. Numerous works [101, 12, 122, 3] lift the requirement for gathering variations of target
shapes by disentangling identities from poses, enforcing cycle consistency [122], or adapting conditional
normalization layers [101] from image style transfer [68]. Notably, Aigerman et al. [3] train a network
that regresses Jacobian fields from SMPL [63] pose parameters. The vertex coordinates are computed by
solving Poisson’s equation [116], effectively preserving the shapes’ local details. Wang et al. [100] also
train a neural implicit function and retrieve a shape latent from a template mesh of an unseen identity
via autodecoding [67]. This method models local deformations through a coordinate-based network that
learns continuous deformation fields. However, such methods struggle to generalize to unseen identities
due to their reliance on global latent embeddings encoding shapes. We propose a representation that
not only disentangles poses from identities but also allows for implicit queries using the surface points,
thereby improving generalization to new identities.
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Figure 2.2: Method overview. Our framework extracts keypoint-based hybrid pose representations
from Jacobian fields. These fields are mapped by the pose extractor g and mapped back by the pose
applier h. The pose applier, conditioned on the extracted pose, acts as an implicit deformation field for
various shapes, including those unseen during training. A refinement module α, positioned between g

and h, is trained in a self-supervised manner, leveraging the target’s template shape. The compactness
of our latent representations facilitates the training of a diffusion model, enabling diverse pose variations
through generative modeling in the latent space.

2.3 Method

2.3.1 Problem Definition

Consider a source template mesh MS = (VS
, FS), given as a 2-manifold triangular mesh. The mesh

comprises vertices VS and faces FS . Suppose there exist N variations of the source template mesh,
{MS

1 , . . . ,MS
N}, where each MS

i = (VS
i , FS) is constructed with a different pose, altering the vertex

positions while sharing the same mesh connectivity FS .
Assume a target template meshMT = (VT

, FT ) is given without any information about its variations
or existing pose parameterization (e.g., , skeletons or joints). Our goal is to define functions g and h that
can transfer the pose variations from the source meshes to the target template mesh. For each variation
of the source shape MS

i , its corresponding mesh MT
i for the target is obtained as:

MT
i = (h(g(MS

i ),MT ), FT ), for i = 1, 2, · · · , N. (2.1)

Specifically, we design g as a pose extractor that embeds a source object meshMS
i into a pose latent

representation ZS
i = g(MS

i ). This representation disentangles the pose information from the object’s
identity in MS

i and facilitates transferring the pose to the target template mesh MT . Given this pose
representation, the pose applier h then applies the pose to MT , yielding the corresponding variation of
the target object MT

i = h(ZS
i ,MT ). Note that our method is not limited to transferring the pose of a

given variation of the source object to the target mesh but can also apply a pose generated by a diffusion
model to the target mesh. In Sec. 2.3.5, we explain how a diffusion model can be trained with the latent
pose representation extracted from source object variations. In the following, we first describe the key
design factors of the functions g and h to tackle the problem.

2.3.2 Keypoint-Based Hybrid Pose Representation

To encode a source shapeMS into a latent representation ZS , we consider its vertices VS as its geometric
representation and use them as input to the pose extractor g, which is designed as a sequence of Point
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Transformer [120, 94] layers. These layers integrate vector attention mechanisms [119] with progressive
downsampling of input point clouds. The output of the pose extractor g is a set of unordered tuples
ZS =

{
(zS

k , hS
k )

}K

k=1 where zS
k ∈ R3 represents a 3D coordinate of a keypoint subsampled from VS via

farthest point sampling (FPS) and hS
k is a learned feature associated with zS

k . This set ZS forms a
sparse point cloud of keypoints in 3D space, augmented with latent features. We set K = 100 in our
experiments.

This keypoint-based hybrid representation, visualized in Fig. 2.2, is designed to exclusively transfer
pose information from the source to the target while preventing leakage of the source shape’s identity
characteristics. Since the keypoints {zS

k } are sampled from VS using FPS, they effectively capture the
overall pose structure of VS while also supporting geometric queries with the vertices of a new mesh.
This property is essential during the decoding phase, where the pose applier h predicts the pose-applied
mesh from the input template as an implicit deformation field.

The pose applier h is implemented with a neural network that takes the 3D coordinates of a vertex
from the input template mesh as a query, along with the hybrid pose latent representation Z, and
outputs the new position of the vertex in the pose-applied deformed mesh. Note that h indicates a
function that collectively maps all vertices in the input template mesh to their new positions using
the network. Like the pose extractor g, the implicit deformation network is also parameterized as Point
Transformer layers [120]. It integrates the pose information encoded in ZS by combining vector attention
mechanisms with nearest neighbor queries to aggregate features of the keypoints zS

k around each query
point. The aggregated features are then decoded by an MLP to predict the vertex coordinates of the
deformed shape. (This is a base network, and we also introduce a better way to design the implicit
deformation network in Sec. 2.3.3.)

Given only the variations of the source object {MS
1 , . . . ,MS

N}, we jointly learn the functions g and
h by reconstructing the variations of the source object as a deformation of its template:

LV = ∥VS
i − h(g(MS

i ),MS)∥2. (2.2)

While g and h are trained using the known variations of the source objectMS , the latent representation
ZS = g(MS), when queried and decoded with the target template mesh, effectively transfers the pose
extracted by g from MS . However, we also observe that g and h, when trained using the loss LV , often
result in geometry with noticeable imperfections and noise on the surfaces. To address this, we explore
an alternative representation of a mesh that better captures and preserves geometric details, which will
be discussed in the following section.

2.3.3 Representing Shapes as Jacobian Fields

In this work, we advocate employing the differential properties of surfaces as dual representations of a
mesh. Of particular interest are Jacobian fields, a gradient-domain representation noted for its efficacy
in preserving local geometric details during deformations [3], while ensuring that the resulting surfaces
maintain smoothness [23].

Given a mesh M = (V, F), a Jacobian field J represents the spatial derivative of a scalar-valued
function ϕ :M→ R defined over the surface. We discretize ϕ as ϕV ∈ R|V|, sampling its value at each
vertex v of the vertex set V. The spatial derivative of ϕ at each triangle f ∈ F is computed as ∇f ϕV

using the per-triangle gradient operator ∇f . Given that each dimension of vertex coordinates V is such
a function, we compute its spatial gradient at each triangle f as Jf = ∇f V. Iterating this process for all
triangles yields the Jacobian field J = {Jf |f ∈ F}.
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To recover V from a given Jacobian field J, we solve a least-squares problem, referred to as Poisson’s
equation:

V∗ = argmin
V
∥LV−∇TAJ∥2, (2.3)

where L ∈ R|V|×|V| is the cotangent Laplacian of M, ∇ is the stack of gradient operators defined at
each f ∈ F, and A ∈ R3|F|×3|F| is the diagonal mass matrix, respectively. Since the rank of L is at most
|V| − 1, we can obtain the solution by fixing a single point, which is equivalent to eliminating one row of
the system in Eqn. 2.3. Since L in Eqn. 2.3 remains constant for a given shape M, we can prefactorize
the matrix (e.g., using Cholesky decomposition) and quickly solve the system for different Jacobian fields
J’s. Furthermore, the upstream gradients can be propagated through the solver since it involves only
matrix multiplications [3].

Employing Jacobian fields as shape representations, we now modify the implicit deformation network
described in Sec. 2.3.2 to take face center coordinates as input instead of vertex coordinates and to output
a new face Jacobian for a query face instead of a new vertex position. This results in decomposing h

into two functions h = (ξ ◦ h′), where h′ is a function that collectively maps all the faces in the input
mesh to the new Jacobian, and ξ is a differentiable Poisson solver layer. Both g and h′ are then trained
by optimizing the following loss:

LJ = ∥VS
i − ξ(h′(g(MS

i ),MS))∥2. (2.4)

2.3.4 Per-Identity Refinement using Geometric Losses

While the latent pose representation Z learned by g and h exhibits promising generalization capabilities
in transferring poses, the quality of the transferred shapes can be further improved by incorporating a
trainable, identity-specific refinement module into our system. This module is trained in a self-supervised
manner with the set of pose-applied target meshes. Similarly to techniques for personalized image
generation [32, 112], we introduce a shallow network α between g and h, optimizing its parameters while
keeping the rest of the pipeline frozen.

The optimization of α is driven by geometric losses, aiming to minimize the geometric discrepan-
cies in terms of the object’s identity between the target template mesh MT and the pose-transferred
meshes MT

i . In particular, we first extract poses
{
ZS

1 , . . . ,ZS
N

}
corresponding to the known shapes{

MS
1 , . . . ,MS

N

}
of the source object. A transformer-based network α, which maps a latent representa-

tion ZS to ZS′, is plugged in between the pose extractor g and the pose applier h :

VT
i = h(α(ZS

i ),MT ). (2.5)

The parameters of α are updated by optimizing the following loss function:

Lref = λlapLlap(VT
i , VT ) + λedgeLedge(VT

i , VT ) + λreg(
∑

k

∥zS
k − zS′

k ∥2 + ∥hS
k − hS′

k ∥2), (2.6)

where Llap(·) is the mesh Laplacian loss [61], Ledge(·) is the edge length preservation loss [55], and λlap,
λedge, and λreg are the weights of the loss terms. Specifically, Llap(·) encourages the preservation of
Laplacian energy by minimizing the discrepancy between the Laplacians of the target templateMT and
the pose-transferred mesh MT

i :

Llap

(
VT

i , VT
)

= LT

(
VT

i −VT
)

, (2.7)
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where LT is the cotangent Laplacian matrix of MT . Simultaneously, Ledge(·) mitigates abrupt shape
changes by penalizing the differences in edge lengths between MT and MT

i :

Ledge(VT
i , VT ) =

∑
{j,k}∈E

|∥VT
i,j −VT

i,k∥2 − ∥V
T

j −VT

k ∥2|, (2.8)

where E is the set of edges defining the target shapes, and VT
i,j and VT

j represent the coordinates of
the j-th vertex in VT

i and VT , respectively. Note that this refinement step leverages only the originally
provided template shapeMT and does not require its given variations or any other additional supervision.

2.3.5 Learning Latent Diffusion via Cascaded Training

The use of the keypoint-based hybrid representation discussed in Sec. 2.3.2 offers a compact latent space
suitable for generative modeling using diffusion models [88, 30, 89, 87]. Unlike the Jacobian fields with
dimensionality |F| × 9, the keypoints and their feature vectors that comprise the pose representation
ZS lie in significantly lower dimensional space, facilitating generative modeling with latent diffusion
models [77].

We employ a cascaded diffusion framework [31, 50] to separately capture the layouts of keypoints
and the associated feature vectors. Given a set {ZS

1 , . . . ,ZS
N} of N latent embeddings extracted from

the known source shape variations
{
MS

1 , . . . ,MS
N

}
, we first learn the distribution over ZS =

{
zS

k

}K

k=1.
To handle unordered sets with small cardinality, we employ a transformer-based network to facilitate
interactions between each element within the noise prediction network ϵτ (ZS

t , t) where t is a diffusion
timestep and ZS

t is a noisy 3D point cloud obtained by perturbing a clean keypoint set ZS
0

(
= ZS

)
via

forward diffusion process [30]. We train the network by optimizing the denoising loss:

LZS = EZS ,ϵ ∼ N (0,I),t ∼ U(0,1)
[
∥ϵ− ϵτ (ZS

t , t)∥2]
. (2.9)

Likewise, the distribution of the set of latent features HS =
{

hS
k

}K

k=1 is modeled as a conditional
diffusion model ϵµ, which takes ZS as an additional input to capture the correlation between ZS and
HS . The network is trained using the same denoising loss:

LHS = EHS ,ϵ ∼ N (0,I),t ∼ U(0,1)
[
∥ϵ− ϵµ(HS

t , ZS , t)∥2]
. (2.10)

Once trained, the models can sample new pose representations through the reverse diffusion steps [30]:

ZS
t−1 = 1

√
αt

(
ZS

t −
βt√

1− ᾱt
ϵτ

(
ZS

t , t
))

, (2.11)

HS
t−1 = 1

√
αt

(
HS

t −
βt√

1− ᾱt
ϵµ

(
HS

t , ZS
0 , t

))
, (2.12)

where αt, ᾱt, and βt are the diffusion process coefficients.

2.4 Experiments

2.4.1 Experiment Setup

Datasets. In our experiments, we consider animal and human shapes that are widely used in various
applications. For the animal shapes, we utilize animation sequences from the DeformingThings4D-
Animals dataset [54]. Specifically, we extract 300 meshes from the animation sequences of each of 9
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different animal identities, spanning diverse species: Bear, Bunny, Canine, Deer, Dog, Elk, Fox,
Moose, and Puma. We use the first frame of the first animation sequence (alphabetically ordered) as
the template for each identity, and the last frame of randomly sampled animation sequences for pose
variations. For humanoids, we use SMPL [63, 69], which facilitates easy generation of synthetic data
for both training and testing. We sample 300 random pose parameters from VPoser [69] to generate
variations of an unclothed human figure using the default body shape parameters, which are used to train
our networks. For testing, we keep the pose parameters constant and sample 40 different body shapes
from the parametric space covered by the unit Gaussian. This produces 40 different identities, each in
300 poses. The generated meshes serve as the ground truth for pose transfer. To assess the generalization
capability to unusual identities that deviate significantly from the default body shape, we increase the
standard deviation to 2.5 when sampling SMPL body parameters for 30 of the 40 identities. Additionally,
we collect 9 stylized character meshes from the Mixamo dataset [1] to test the generalizability of different
methods. In both SMPL [63] and Mixamo [1] datasets, T-posed humanoid shapes are used as templates.
For diffusion model training, the extracted keypoints and their associated features from the given set of
source meshes are used as the training data for our cascaded diffusion model, which is trained separately
for each identity.

Baselines. To assess the performance of pose transfer, we compare our method against NJF [3],
SPT [55], ZPT [100], and various modifications of our framework. For NJF [3], we use the official
code from the Morphing Humans experiment, employing a PointNet [72] encoder to map input shapes
to global latents, and we train the model on our datasets. For SPT [55], we use the official code and
pretrained model on humanoid shapes. Since a pretrained model for animal shapes is not provided,
the comparison with SPT on the DeformingThings4D-Animals dataset is omitted. For ZPT [100], the
official implementation is not provided, so we implemented the model based on the description in the
paper. In our ablation study, we explore different variations of our method to assess their impact on
performance, including: (1) using vertex coordinates as shape representations (as described in Sec. 2.3.2),
and (2) omitting the per-identity refinement module (Sec. 2.3.4). All models (except for SPT [55], for
which we employ a pretrained model) are trained for each shape identity.

Evaluation Metrics. For pose transfer, when the corresponding shapes of the same pose are given for
both source and target shapes, in the SMPL case, we measure accuracy using Point-wise Mesh Euclidean
Distance (PMD) [122, 101], following our baselines[55, 100]. Note that this measurement cannot be
applied in the DeformingThings4D-Animals case since pose-wise correspondences are not provided. For
both pose transfer and shape generation (via pose generation), we measure the visual plausibility of the
output meshes using FID [29], KID [9], and ResNet classification accuracy with images rendered from
four viewpoints (front, back, left, and right) without texture. For the latter, we train a ResNet-18 [26]
network using 10,800 images rendered from the four viewpoints of all ground truth shape variations of
each animal.

Implementation Details. We utilize Point Transformer layers from Zhao et al. [120] and Tang et
al. [94] for implementing the pose extractor g and the pose applier h. The network architectures
for our cascaded diffusion models, as detailed in Sec. 2.4.6, are adapted from Koo et al. [50]. These
models operate over T = 1000 timesteps with a linear noise schedule ranging from β1 = 1 × 10−4 to
βT = 5 × 10−2. For model training, we employ the ADAM optimizer at a learning rate of 1 × 10−3
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and standard parameters. Our experiments are conducted on RTX 3090 GPUs (24 GB VRAM) and
A6000 GPUs (48 GB VRAM). For per-identity refinement modules, we set λlap = 1.0, λedge = 1.0, and
λreg = 5× 10−2 during training.

2.4.2 Pose Transfer on DeformingThings4D-Animals

We begin our experiments by transferring pose variations across different animals, a challenging task
that necessitates strong generalization capabilities due to the diverse shapes of the animals involved.

DeformingThings4D-Animals [54] SMPL [63]
FID ↓ KID ↓ ResNet PMD ↓ FID ↓ KID ↓ ResNet

(×10−2) (×10−2) Acc. ↑ (%) (×10−3) (×10−2) (×10−2) Acc. ↑ (%)

NJF [3] 11.33 5.71 64.43 2.55 1.57 0.82 70.93
SPT [55] - - - 0.28 0.83 0.43 75.38

ZPT [100] 19.88 11.09 48.15 1.28 0.77 0.45 69.88
Ours 1.11 0.42 78.72 0.13 0.30 0.19 79.09

Table 2.1: Quantitative results on the experiments using the DeformingThings4D-Animals dataset [54]
and the human shape dataset populated using SMPL [63].

We summarize the quantitative metrics in Tab. 2.1 (left). Our method outperforms NJF [3] and
ZPT [100], both of which use global latent codes to encode shapes, while ours uses a keypoint-based
hybrid representation. Note that SPT [55] is not compared in this experiment since the pretrained
model is not provided for animal shapes. Qualitative results are also shown in Fig. 2.3, demonstrating
the transfer of poses from a source mesh MS (second and seventh column, red) to a target template
meshMT (first and sixth column, blue). Both NJF [3] and ZPT [100] introduce significant distortions to
the results and often fail to properly align the pose extracted from the source to the target. Our method,
on the other hand, effectively transfers poses to the targets while preserving local geometric details.

2.4.3 Pose Transfer on SMPL and Mixamo

We further test our method and baselines using humanoid shapes ranging from SMPL to stylized char-
acters from the Mixamo [1] dataset. While we employ the parametric body shape and pose model of
SMPL [63, 69], it is important to note that this is only for evaluation purposes; our method does not
assume any parametric representations, such as skeletons, for either training or inference.

Tab. 2.1 (right) summarizes the evaluation metrics measured across the 40 target shapes. Notably,
our method achieves lower PMD than SPT [55], which is trained on a large-scale dataset consisting of
diverse characters and poses, while ours is trained using only 300 pose variations of the default human
body. This is further illustrated in the qualitative results in Fig. 2.4, where we demonstrate pose transfer
from source meshes (red) to target template meshes (blue) not seen during training. As shown, the shapes
transferred by our method accurately match the overall poses. Our method benefits from combining a
keypoint-based hybrid representation with Jacobian fields, outperforming the baselines in preserving
local details, especially in areas with intricate geometric features such as the hands. See the zoomed-in
views in Fig. 2.4.

Furthermore, we apply our model to a more challenging setup involving stylized characters. In
Fig. 2.5, we present qualitative results using shapes from the Mixamo [1] dataset. Despite being trained
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MT MS NJF [3] ZPT [100] Ours MT MS NJF [3] ZPT [100] Ours

Figure 2.3: Qualitative results of transferring poses of the source meshes MS ’s (red) in the Deform-
ingThings4D animals [54] to target templates MT ’s (blue). Best viewed when zoomed in.

on a single, unclothed SMPL body shape, our method generalizes well to stylized humanoid characters
with detailed geometry (first row) and even to a character missing one arm (second row).

2.4.4 Ablation Study

Our framework design is further validated by comparisons against different variations of our framework,
as listed in Sec. 2.4.1, in the pose transfer experiment on animal shapes discussed in Sec. 2.4.2. Tab. 2.2
(left) summarizes the image plausibility metrics measured using the results from our internal baselines.
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MT MS NJF [3] SPT [55] ZPT [100] Ours MT
GT

Figure 2.4: Qualitative results of transferring poses of the default human meshesMS ’s (red) to different
target template meshesMT ’s (blue). The ground truth targetsMT

GT’s (grey) are displayed for reference.
Best viewed when zoomed in.
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MT MS NJF [3] SPT [55] ZPT [100] Ours

Figure 2.5: Qualitative results of transferring poses of the default human meshes MS ’s (red) to target
template meshes MT ’s (blue) of Mixamo characters [1]. Best viewed when zoomed in.

Qualitative results are presented in Fig. 2.6. Our method, which extracts pose representations from
Jacobian fields and leverages the per-identity refinement module, achieves the best performance among
all the variations.
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Poses from MS
i Generated Poses (Sec. 2.3.5)

Jacobian
(Sec. 2.3.3)

Refinement
(Sec. 2.3.4)

FID ↓ KID ↓ ResNet FID ↓ KID ↓ ResNet
(×10−2) (×10−2) Acc. ↑ (%) (×10−2) (×10−2) Acc. ↑ (%)

✗ ✗ 3.52 2.13 55.67 9.52 4.69 44.34
✓ ✗ 1.17 0.47 75.13 4.40 2.39 75.82
✓ ✓ 1.11 0.42 78.72 4.22 2.24 78.81

Table 2.2: Ablation study using the poses from the source shapes in DeformingThings4D-Animals [54]
dataset (left) and the poses generated from our cascaded diffusion model.

MT MS Vertex Only Jacobian Field Only Ours

Figure 2.6: Qualitative results from the ablation study where a pose of the source shape MS (red) in
the DeformingThings4D-Animals [54] is transferred to the target template shape MT (blue).

2.4.5 Sensitivity to Number of Keypoints

We examine the sensitivity of our method to the number of keypoints by testing different variants of
our framework while varying the number of keypoints extracted by the pose extractor to 50, 25, and 10,
respectively. These variants are trained using the same SMPL [63] human body shapes and animal shapes
from the DeformingThings4D-Animals [54] dataset. Our per-identity refinement stage (Sec. 2.3.4) is
omitted to focus exclusively on the impact of keypoint counts on performance. Tab. 2.3 summarizes
FID and PMD measured using the DeformingThings4D-Animals and SMPL dataset, respectively. We
showcase qualitative results in Fig. 2.7 and Fig. 2.8. As reflected in both quantitative and qualitative
results, reducing the number of keypoints does not significantly affect pose transfer accuracy.

DeformingThings4D-Animals [54] SMPL [63]
Method Ours–10 Ours-25 Ours-50 Ours-100 Method Ours–10 Ours-25 Ours-50 Ours-100

FID
(×10−2)

1.25 0.87 0.83 0.72
PMD

(×10−3)
0.20 0.17 0.17 0.13

Table 2.3: Quantitative results from the variants of our framework trained to extract different number
of keypoints. Ours-N denotes a variant of our network trained to extract N keypoints.

2.4.6 Pose Variation Generation Using Diffusion Models

We evaluate the generation capabilities of our diffusion models trained using different pose represen-
tations. Since no existing generative model can learn pose representations transferable across various
shapes, we focus on analyzing the impact of using Jacobian fields on generation quality. We use shapes
obtained by applying 300 generated poses to bothMS ’s (red) and variousMT ’s (blue). The quantitative
and qualitative results are summarized in Tab. 2.2 (right) and Fig. 2.9, respectively. While the poses are
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MT MS Ours-10 Ours-25 Ours-50 Ours-100

Figure 2.7: Qualitative results of transferring a pose of the source shape MS (red) in
DeformingThings4D–Animals [54] to the target template shape MT (blue) using variants of our frame-
work (Ours-N), trained to extract N keypoints.

MT MS Ours-10 Ours-25 Ours-50 Ours-100 MT
GT

Figure 2.8: Qualitative results of transferring a pose of the default human meshMS (red) to the target
template mesh MT (blue) using variants of our framework (Ours-N), trained to extract N keypoints.

generated using the diffusion model, our model still achieves ResNet classification accuracy comparable
to the pose transfer experiment (Tab. 2.2, left). This tendency is also reflected in the qualitative results
shown in Fig. 2.9. These results validate that the latent space learned from variations of Jacobian fields
is more suitable for generating high-quality shape and pose variations compared to the one based on
vertices.

2.5 Conclusion

We have presented a method for learning a novel neural representation of the pose of non-rigid 3D shapes,
which facilitates: 1) the disentanglement of pose and object identity, 2) the training of a generative model
due to its compactness, and 3) the transfer of poses to other objects’ meshes. In our experiments, we
demonstrated the state-of-the-art performance of our method in pose transfer, as well as its ability to
generate diverse shapes by applying the generated poses to different identities.

Limitations. Our method leverages differential operators to compute the Jacobian field of the given
template mesh, requiring additional preprocessing when dealing with meshes that have multiple discon-
nected components or defects in the triangulation. Our framework also assumes that a template mesh of
the shape is known for pose transfer. We plan to extend our framework for transferring poses between
arbitrary shapes in future work.

Societal Impacts. Our generative model for poses and the pose transfer technique could potentially
be misused for deepfakes. Developing robust guidelines and techniques to prevent such misuse is an
important area for future research.
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Figure 2.9: Pose variation generation results. Each row illustrates the outcomes of applying a generated
pose to a source template mesh MS (red) and a target template mesh MT (blue).
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Chapter 3. Plausibility-Aware Mesh Deformation

3.1 Introduction

Source ARAP OursSource ARAP Ours Source ARAP Ours

Figure 3.1: APAP, our novel shape deformation method, enables plausibility-aware mesh deformation
and preservation of fine details of the original mesh offering an interface that alters geometry by directly
displacing a handle (red) along a direction (gray), fixing an anchor vertex (green). Using a diffusion prior
results in smoother geometry around the armchair handle, as seen in the example (middle column).

For 2D and 3D content, mesh is the most prevalent representation, thanks to its efficiency in storage,
simplicity in rendering and also compatibility in common graphics pipelines, versatility in diverse ap-
plications such as design, physical simulation, and 3D printing, and flexibility in terms of decomposing
geometry and appearance information, with widespread adoption in the industry.

For the creation of 2D and 3D meshes, recent breakthroughs in generative models [81, 84, 50, 71,
103, 82, 62, 95] have demonstrated significant advances. These breakthroughs enable users to easily
generate content from a text prompt [71, 103, 82, 62, 95], or from photos [82, 74]. However, visual
content creation typically involves numerous editing processes, deforming the content to satisfy users’
desires through interactions such as mouse clicks and drags. Facilitating such interactive editing has
remained relatively underexplored in the context of recent generative techniques.

Mesh deformation is a subject that has been researched for decades in computer graphics. Over
time, researchers have established well-defined methodologies, characterizing mesh deformation as an
optimization problem that aims to preserve specific geometric properties, such as the Mesh Laplacian [59,
91, 60], local rigidity [34, 90], and mesh surface Jacobians [3, 23], while satisfying given constraints. To
facilitate user interaction, these methodologies have been extended to introduce specific user-interactive
deformation handles, such as keypoints [36, 102, 46], cage mesh [43, 42, 58, 104, 113, 39], and skeleton [6,
108, 109], with the blending functions defined based on the preservation of geometric properties.

Despite the widespread use of classical mesh deformation methods, they often fail to meet users’
needs because they do not incorporate the perceptual plausibility of the outputs. For example, as
illustrated in Fig. 3.1, when a user intends to drag a point on the top of a table image, the classical
deformation technique may introduce unnatural bending instead of lifting the tabletop. This limitation
arises because deformation techniques solely based on geometric properties do not incorporate such
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semantic and perceptual priors, resulting in the mesh editing process becoming more tedious and time-
consuming.

Recent learning-based mesh deformation techniques [113, 39, 46, 108, 61, 3, 94] have attempted to
address this problem in a data-driven way. However, they are also limited by relying on the existence
of certain variations in the training data. Even recent large-scale 3D datasets [11, 106, 17, 16] have not
reached the scale that covers all possible visual content users might intend to create.

To this end, we introduce our novel mesh deformation framework, dubbed APAP (As-Plausible-As-
Possible), which exploits 2D image priors from a diffusion model pretrained on an Internet-scale image
dataset to enhance the plausibility of deformed 2D and 3D meshes while preserving the geometric priors
of the given shape. Recently, score distillation sampling (SDS) [71] has demonstrated great success in
generating plausible 2D and 3D content, such as NeRF [123, 47, 41] and vector images [38, 35], using the
distilled 2D image priors from a diffusion model. We incorporate these diffusion-model-based 2D priors
into the optimization-based deformation framework, achieving the best synergy between geometry-based
optimization and distilled-prior-based optimization.

To achieve this optimal synergy between geometric and perceptual priors within a unified framework,
we introduce an alternative optimization approach. At each step, we first update the Jacobian of each
mesh face using the SDS loss and user-provided constraints. Subsequently, the mesh vertex positions are
recalculated by solving Poisson’s equation with the updated face Jacobians. The direct application of the
2D diffusion prior via SDS, however, tends to compromise the identity of the given objects—an essential
aspect in deformation. We thus enhance the identity awareness of the diffusion prior by finetuning it with
the provided source image. The model is integrated into our two-stage pipeline that initiates deformation
without the perceptual prior (SDS) and refines it with SDS and the given constraints afterward to create
deformations that adhere to user-defined editing instructions while remaining visually plausible.

In experiments, we examine APAP using APAP-Bench consisting of 3D and 2D triangular meshes
and editing instructions. The proposed method produces plausible deformations of 3D meshes compared
to its baseline [90] based exclusively on a geometric prior. Evaluation in the task of 2D mesh edit-
ing further verifies the effectiveness of APAP as illustrated by the highest k-NN GIQA score [25] in
quantitative analysis, and the higher preference over the baseline in a user study.

3.2 Related Work

3.2.1 Geometric Mesh Deformation

Mesh deformation has been one of the central problems in geometry processing and is thus addressed by
a wide range of techniques. Cage-based methods [43, 42, 58, 104] let users alter meshes by manipulating
cages enclosing them, calculating a point inside as a weighted sum of cage vertices. Skeleton-based
approaches [105, 6, 108, 109] offer animation control by mapping surface points to underlying joints
and bones, ideal for animating human/animal-like figures. Unlike the previous techniques that require
the manual cage or skeleton construction, biharmonic coordinates-based methods [36, 102] automate
establishing mappings from control points to vertices by formulating optimization problems. Other
types of works instead allow users to manipulate shapes via direct vertex displacement while imposing
constraints on local surface geometry, including rigidity [34, 90] and Laplacian smoothness [59, 91, 60].
Such hand-crafted deformation priors often lack consideration of visual plausibility, necessitating careful
control point placement and iterative manual refinement to achieve satisfactory results.
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3.2.2 Data-Driven Mesh Deformation

Data-driven approaches to mesh deformation [113, 39, 46, 108, 61, 3, 94] learn from shape collections,
utilizing neural networks to infer parameters for classical deformation techniques, such as cage vertex
coordinates and displacements [113], keypoints [39, 102, 46], subspaces of keypoint arrangements [61],
differential coordinates [3], etc. However, these methods assume the availability of large-scale category-
specific shape collection [113, 39, 102, 46, 108] or require dense correspondences between them [94, 3],
limiting their applicability to new, out-of-sample shapes. We instead propose to directly mine deforma-
tion priors from pretrained diffusion models. Leveraging a generic (category-agnostic) image generative
model trained on an Internet-scale image dataset, we devise a method that easily generalizes to novel
2D and 3D shapes while lifting the requirement for shape collections.

3.2.3 Pretrained 2D Priors for Shape Manipulation

Image analysis [73] and generation [77, 117, 5, 53] techniques can serve as effective visual priors for
image editing tasks [10, 28, 97, 118, 83]. In addition, recent work [21, 78] and their adaption [20], enable
personalized image generation and editing by learning a text embedding [21] or fine-tuning additional
parameters, such as LoRA [33] to preserve and replicate the identities of given exemplars during edit-
ing. One interesting work is DragDiffusion [83], akin to DragGAN [66], which introduces a drag-based
user interface for image editing through the manipulation of latent representations. However, it is not
extendable to the deformation of parametric images, such as 2D meshes, and also 3D shapes. Another
interesting line of works [64, 45, 23] extends the idea further to manipulate shapes by propagating
image-based gradients to the underlying shape representations. They maximize CLIP [73] similarity
between the renderings and text prompts to either add geometric textures [64], jointly update both
vertices and texture [45], or deform a shape parameterized by per-triangle Jacobians [23]. In contrast to
such text-driven editing techniques, we build on Score Distillation Sampling (SDS) [71] to enable direct
manipulation of shapes via handle displacement, ensuring visual plausibility. While the technique is
prevalent in various problems ranging from text-to-3D [71, 103, 82, 62, 95], image editing [27] and neural
field editing [123], it has not been adopted for shape deformation.

3.3 Method

We present APAP, a novel handle-based mesh deformation framework capable of producing visually
plausible deformations of either 2D or 3D triangular meshes. To achieve this goal, we integrate powerful
2D diffusion priors into a learnable Jacobian field representation of shapes.

We emphasize that leveraging 2D priors, such as latent diffusion models (LDMs) [77] trained on
large-scale datasets [80], for shape deformation poses challenges that require meticulous design choices.
The following sections will delve into the details of shape representation (Sec. 3.3.1) and diffusion prior
(Sec. 3.3.2), offering a rationale for the design decisions underpinning our framework (Sec. 3.3.3).

3.3.1 Representing Shapes as Jacobian Fields

Let M0 = (V0, F0) denote a source mesh to be deformed, represented by vertices V0 ∈ RV ×3 and
faces F0 ∈ RF ×3. Users are allowed to select a set of vertices used as movable handles designated by
an indicator matrix Kh ∈ {0, 1}Vh×V . We also require users to select a set of anchors, represented as
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another indicator matrix Ka ∈ {0, 1}Va×V , to avoid trivial solutions (i.e., global translations). Then, the
handle and anchor vertices become Vh = KhV0 and Va = KaV0.

Our framework also expects a set of vectors Dh ∈ RVh×3 that indicate the directions along which
the handles will be displaced. Furthermore, we let Th = Vh + Dh and Ta = Va denote the target
positions of the user-specified handles and anchors, respectively.

In this work, we employ a Jacobian field J0 = {J0,f |f ∈ F0}, a dual representation of M0, defined
as a set of per-face Jacobians J0,f ∈ R3×3 where

J0,f = ∇f V0, (3.1)

and ∇f is the gradient operator of triangle f .
Conversely, we compute a set of deformed vertices V∗ from a given Jacobian field J by solving a

Poisson’s equation

V∗ = arg min
V

∥LV−∇TAJ∥2, (3.2)

where ∇ is a stack of per-face gradient operators, A ∈ R3F ×3F is the mass matrix and L ∈ RV ×V is the
cotangent Laplacian of M0, respectively. Since L is rank-deficient, the solution of Eqn. 3.2 cannot be
uniquely determined unless we impose constraints. We thus consider a constrained optimization problem

V∗ = arg min
V

∥LV−∇TAJ∥2 + λ∥KaV−Ta∥2, (3.3)

where λ ∈ R+ is a weight for the constraint term. Note that we solve Eqn. 3.3 with the user-specified
anchors as constraints to determine V∗.

Taking the derivative with respect to V, the problem in Eqn. 3.3 turns into a system of equations

(
LT L + λKT

a Ka

)
V = LT ∇TAJ + λKT

a Ta, (3.4)

which can be efficiently solved using a differentiable solver [3] implementing Cholesky decomposition.
We let g denote a functional representing the aforementioned differentiable solver for notational

convenience, V∗ = g (J, Ka, Ta). Since g is differentiable, we can deform M0 by propagating upstream
gradients from various loss functions to the underlying parameterization J. For instance, one may impose
a soft constraint on the locations of selected handles during optimization with the objective of the form:

Lh = ∥KhV∗ −Th∥2. (3.5)

We will discuss how such a soft constraint can be blended into our framework in Sec. 3.3.3. Next, we
describe how to incorporate a pretrained diffusion model as a prior for visual plausibility.

3.3.2 Score Distillation for Shape Deformation

While traditional mesh deformation techniques make variations that match the given geometric
constraints, their lack of consideration on visual plausibility results in unrealistic shapes. Motivated by
recent success in text-to-3D literature, we harness a powerful 2D diffusion prior [77] in our framework as
a critic that directs deformation by scoring the realism of the current shape.
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Figure 3.2: The overview of APAP. APAP parameterizes a triangular mesh as a per-face Jacobian
field that can be updated via gradient-descent. Given a textured mesh and user inputs specifying the
handle(s) and anchor(s), our framework initializes a Jacobian field as a trainable parameter. During the
first stage, the Jacobian field is updated via iterative optimization of Lh, a soft constraint that initially
deforms the shape according to the user’s instruction. In the following stage, the mesh is rendered using
a differentiable renderer R and the rendered image is provided as an input to a diffusion prior finetuned
with LoRA [33] that computes the SDS loss LSDS. The joint optimization of Lh and LSDS improves the
visual plausibility of the mesh while conforming to the given edit instruction.

Specifically, we distill its prior knowledge via Score Distillation Sampling (SDS) [71]. Let J denote
the current Jacobian field and V∗ be the set of vertices computed from J following the procedure
described in Sec. 3.3.1.

We render M∗ = (V∗, F) from a viewpoint defined by camera extrinsic parameters C using a
differentiable renderer R, producing an image I = R (M∗, C). The diffusion prior ϵ̂ϕ then rates the
realism of I, producing a gradient

∇JLSDS (ϕ, I) = Et,ϵ

[
w (t) (ϵ̂ϕ (zt; y, t)− ϵ) ∂I

∂J

]
, (3.6)

where t ∼ U (0, 1), ϵ ∼ N (0, I), and zt is a noisy latent embedding of I. The propagated gradient alters
the geometry of M by modifying J.

To increase the instance-awareness of the diffusion model, we follow recent work [78, 83] on person-
alized image editing and finetune the model using LoRA [33]. In particular, we first render M from n

different viewpoints to obtain a set I = {I1, . . . , In} of training images and inject additional parameters
to the model, resulting in an expanded set of network parameters ϕ′. The parameters are then optimized
with a denoising loss [77]

L = Et,ϵ,z
[
∥ϵ̂ϕ′ (zt; y, t)− ϵ∥2]

, (3.7)

where zt denotes a latent of a training image perturbed with noise at timestep t.
The finetuned diffusion prior, together with a learnable Jacobian field representation of the source

mesh M0, comprises the proposed framework described in the following section.

3.3.3 As-Plausible-As-Possible (APAP)

APAP tackles the problem of plausibility-aware shape deformation by harmonizing the best of both
worlds: a learnable shape representation founded on classical geometry processing, robust to noisy
gradients, and a powerful 2D diffusion prior finetuned with the image(s) of the source mesh for better
instance-awareness.

We provide an overview of the proposed pipeline in Fig. 3.2 and the algorithm in Alg. 1. We will
delve into details in the following. Provided with a textured meshM0, handles Kh, anchors Ka, as well
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Algorithm 1 As-Plausible-As-Possible
Parameters: g, R, ϕ, γ, M , N

Inputs: M0 = (V0, F0), Ka, Kh, Ta, Th, {Ci}n
i=1

Output: M

procedure FirstStage(J, Ka, Kh, Ta, Th, g)
for i = 1, 2, . . . , M do

V∗ ← g (J, Ka, Ta) ▷ Solving Eqn. 3.4
J ← J− γ∇JLh (V∗, Kh, Th)

end for
return J

end procedure
procedure SecondStage(J, F0, Ka, Kh, Ta, Th, g, ϕ, {Ci})

for i = 1, 2, . . . , N do
V∗ ← g (J, Ka, Ta) ▷ Solving Eqn. 3.4
M∗ ← (V∗, F0)
C ∼ U({Ci}) ▷ Viewpoint Sampling
I ← R (M∗, C) ▷ Rendering
J ← J− γ∇J (LSDS (ϕ, I) + Lh (V∗, Kh, Th))

end for
return J

end procedure

ϕ ← LoRA(ϕ, M0, R, {Ci})
J ← {J0,f |f ∈ F0}
J ← FirstStage(J, Ka, Kh, Ta, Th, g)
J ← SecondStage(J, F0, Ka, Kh, Ta, Th, g, ϕ, {Ci})
V ← g (J, Ka, Ta)
M ← (V, F0)
return M
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as their target positions Th and Ta as inputs, APAP yields a plausible deformation M of M0 that
conforms to the given handle-target constraints. Before deformingM0, we renderM0 from a single view
in the case of 2D meshes and four canonical views (i.e., front, back, left, and right) for 3D meshes and use
the images to finetune Stable Diffusion [77] by optimizing LoRA [33] parameters injected to the model
(the red line in Fig. 3.2). Simultaneously, APAP computes the Jacobian field J0 of the input meshM0

and initializes it as a trainable parameter J.
APAP deforms the input mesh through two stages. In the FirstStage, it first deforms the input

mesh according to instructions from users without taking visual plausibility into account. The subsequent
SecondStage integrates a 2D diffusion prior into the optimization loop, simultaneously enforcing user
constraints and visual plausibility.

At every iteration of the FirstStage illustrated as the blue box in Fig. 3.2, we compute the vertex
positions V∗ corresponding to the current Jacobian field J by solving Eqn. 3.3 using the anchors specified
by Ka as hard constraints. Then, we compute the soft constraint Lh defined as Eqn. 3.5 that drags a set
of handle vertices KhV∗ toward the corresponding targets Th. The interleaving of differentiable Poisson
solve and optimization of Lh via gradient-descent is repeated for M iterations. This progressively updates
J, treated as a learnable black box in our framework, deforming M0. Consequently, the edited mesh
M∗ = (J, F0) follows user constraints at the cost of the degraded plausibility, mitigated in the following
stage through the incorporation of a diffusion prior.

The result of FirstStage then serves as an initialization for the SecondStage, illustrated as the
green box in Fig. 3.2 guided by plausibility constraint LSDS. Unlike the FirstStage where the update of
J was purely driven by the geometric constraint Lh, we aim to steer the optimization based on the visual
plausibility of the current mesh M∗. To achieve this, we render M∗ using a differentiable renderer
R using the same viewpoint(s) from which the training image(s) for finetuning was rendered. When
deforming 3D meshes, we randomly sample one viewpoint at each iteration. The rendered image I is
used to evaluate LSDS which is optimized jointly with Lh for N iterations. The combination of geometric
and plausibility constraints improves the visual plausibility of the output while encouraging it to conform
to the given constraints.

We note that the iterative approach in the FirstStage leads to better results than alternative
update strategies such as deforming the source mesh M0 by minimizing ARAP energy [90] or, solving
Eqn. 3.3 using both Kh and Ka as hard constraints. In our experiments (Sec. 3.4), we show that both
methods produce distortions that cannot be corrected by the diffusion prior in the subsequent stage.
Specifically, directly solving Eqn. 3.3 using all available constraints only yields the least squares solution
V∗ without updating the underlying Jacobians J, resulting in the aforementioned distortions.

3.4 Experiments

We evaluate APAP in downstream applications involving manipulation of 3D and 2D meshes.

3.4.1 Experiment Setup

Benchmark. To evaluate the plausibility of a mesh deformation we propose a novel benchmark APAP-
Bench of textured 3D and 2D triangular meshes spanning both human-made and organic objects an-
notated with handle vertices and their editing directions, and anchor vertices. The set of 3D meshes,
APAP-Bench 3D, is constructed using meshes from ShapeNet [11] and Genie [2]. The meshes are

24



normalized to fit in a unit cube. Each mesh is manually annotated with editing instructions, includ-
ing a set of anchors, handles, and corresponding targets to simulate editing scenarios. APAP-Bench
offers another subset called APAP-Bench 2D, a collection of 80 textured, planar meshes of various
objects, to facilitate quantitative analysis and user study described later in this section. To create
APAP-Bench 2D, we first generate 2 images of real-world objects for each of the 20 categories using
Stable Diffusion-XL [70]. We employ the following template prompt "a photo of [category name]

in a white background" for all categories to facilitate foreground object segmentation in the following
step. The list of all categories, spanning human-made and organic objects, is shown in Tab. 3.1.

Human-Made Organic

backpack flying bird
bike side view of cat
chair side view of dog

high-heeled shoes runway model
purse sitting bird

side view of car standing cheetah
sneakers standing dragon

table standing raccoon
airplane standing sheep

standing white duck
starfish

Table 3.1: Object categories of 2D meshes in APAP-Bench 2D. APAP-Bench 2D includes 2D
triangle meshes depicting various objects, including both human-made and organic objects.

We extract foreground masks from the generated images using SAM [49] and sample pixels that
lie on the boundary and interior. The sampled pixels are used for Delaunay triangulation, constrained
with the edges along the main contour of the masks, that produces 2D triangular meshes with texture.
We assign two handle and anchor pairs to each mesh that imitate user instructions. Specifically, we
choose vertices on the shape boundaries instead of internal vertices to induce deformations that alter
object silhouettes. For instance, users would try to drag the bottom of a backpack downward to enlarge
the shape, instead of dragging an interior point which may flip triangles, distorting the appearance. As
an anchor, we use the vertex closest to the center of mass of each mesh. For evaluation purposes, we
populate the reference set by sampling 1, 000 images for each object category using Stable Diffusion-XL.
The generated images are used to evaluate a perceptual metric to assess the plausibility of 2D mesh
editing results as described in Sec. 3.4.3.

Baselines. We compare our method (APAP) and As-Rigid-As-Possible (ARAP) [90] since it is one
of the widely used mesh deformation techniques that permits shape manipulation via direct vertex
displacement. Throughout the experiments, we use the implementation in libigl [37] with default
parameters.

Evaluation Metrics. In 2D experiments, we conduct quantitative analysis based on k-NN GIQA
score [25] as an evaluation metric to assess the plausibility of instance-specific editing results. The
metric quantifies the perceptual proximity between the edited image and its k nearest neighbors in the
reference set included in APAP-Bench 2D. As our objective is to make plausible variations of 2D
meshes via deformation, an edited object should remain perceptually similar to other objects in the same
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View 1 View 2 View 2 (Zoom In)

Source ARAP [90] Ours Source ARAP [90] Ours Source ARAP [90] Ours

Figure 3.3: Qualitative results from 3D shape deformation. We visualize the source shapes and their
deformations made using ARAP [90] and ours by following the instructions each of which specifies a
handle (red), an edit direction denoted with an arrow (gray), and an anchor (green). We showcase the
rendered images captured from two different viewpoints, as well as one zoom-in view highlighting local
details.

category. We use k = 12 throughout the experiments.

Implementation Details. When implementing Alg. 1, we used a modified version of the differentiable
Poisson solver from [3], denoted by g in Alg. 1, and nvdiffrast [51] when implementing the differentiable
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renderer R in our pipeline. We render 2D/3D meshes at a resolution of 512× 512.
When editing 2D meshes, we optimize Lh for M = 300 iterations in the FirstStage and jointly

optimize Lh and LSDS for N = 700 iterations in the SecondStage. For experiments involving the
optimization of 3D meshes with increased geometric complexity, we use M = 300 and N = 1000 for each
stage, respectively. We use ADAM [48] with a learning rate γ = 1× 10−3 throughout the optimization.
We use the Classifier-Free Guidance (CFG) scale of 100.0 and randomly sample t ∈ [0.02, 0.98] when
evaluating LSDS following DreamFusion [71].

We also utilize neighboring vertices of handles and anchors during deformation to maintain smooth
geometry near the handles. Along with the given handles and anchors, vertices within a sphere of radius
r = 0.01 around the handles and anchors are included to form extended sets called region handles and
region anchors, respectively. When deforming 3D meshes, we use region anchors and a single handle,
while for 2D mesh editing, we employ both region anchors and region handles. Note that the same
sets of handles and anchors are used when deforming shapes with our baseline methods to ensure fair
comparisons.

We use a script from diffusers [19] to finetune Stable Diffusion [77] with LoRA [33]. We employ
stabilityai/stable-diffusion-2-1-base as our base model and augment its cross-attention layers
in the U-Net with rank decomposition matrices of rank 16. For the task of 2D mesh editing, we train
the injected parameters for 60 iterations, utilizing a rendering of a mesh as a training image. In the
3D shape deformation, where renderings from 4 canonical viewpoints (front, back, left, and right) are
available, we finetune the model for 200 iterations. In both cases, we use the learning rate γ = 5× 10−4.

3.4.2 3D Shape Deformation

Qualitative Results. We showcase examples of 3D shape deformation where each deformation is
specified by a handle (red), an edit direction (gray), and an anchor (green). As shown in Fig. 3.3, APAP
is capable of manipulating 3D shapes to improve visual plausibility which is not achievable by solely
relying on geometric prior such as ARAP [90]. For instance, given a user input that drags a handle
on one blade of an axe (the first row) along an arrow, APAP simultaneously expands both blades of
the axe whereas ARAP [90] produces distortions near the head. Similar examples that demonstrate
symmetry-awareness of APAP can be found in other cases such as a car (the second row), and an owl
(the sixth row) where a user lifts only one side of the shape upward and the symmetry is recovered by
APAP which cannot be achieved by ARAP [90]. Also, note that APAP is capable of making a smooth
articulation at the leg of the wolf (the fourth row) by adjusting the overall posture in comparison to
ARAP which creates an excess bending.

3.4.3 2D Mesh Editing

Qualitative Evaluation. We present qualitative results using the baselines and our method in Fig. 3.5.
Each row shows two different results obtained by editing an image based on a handle moved from the
original position (red) along a direction indicated by an arrow (gray) while fixing an anchor (green),
similar to the 3D experiments discussed in the previous section.

As shown in Fig. 3.5, ARAP [90] enforces local rigidity and often results in implausible deformations.
For example, it does not account for the mechanics of the human body and introduces an unrealistic
articulation of a human arm (the fourth row). In addition, it twists the body of a sports car (the fifth
row). Both of them originate from the lack of understanding of the appearance of objects. APAP
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Source

Drag
Diffusion

Ours

Figure 3.4: Failure cases of DragDiffusion. DragDiffusion [83] can easily compromise the identity of
edited instances as it manipulates their latents without an explicit parameterization, the identity of
instances can be broken during editing.

Source ARAP Ours ARAP Ours Source ARAP Ours ARAP Ours

Figure 3.5: Qualitative results from 2D mesh deformation. 2D meshes are edited using ARAP [90] and
the proposed method following the edit instruction consisting of a handle (red), a target direction (gray),
and an anchor (green). We showcase the rendered images of the edited meshes, as well as a zoom-in view
highlighting local details.

alleviates this issue by incorporating a visual prior into shape deformation producing a bending near the
elbow and preserving the smooth silhouette of the car, respectively.

While APAP is designed for meshes not images, we provide an additional qualitative comparison
against DragDiffusion [83], an image editing technique that operates in pixel space, to demonstrate the
effectiveness of mesh-based parameterization in applications where identity preservation is crucial. As
shown in Fig. 3.4, DragDiffusion [83] may corrupt the identity of the instances depicted in input images
during the encoding and decoding procedure. APAP, on the other hand, makes plausible variations of
the given objects while maintaining their originality, benefiting from an explicit mesh representation it
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Methods k-NN GIQA (×10−2) ↑

ARAP [90] 4.753
DragDiffusion [83] 4.545
Ours (Lh Only) 4.797

Ours (ARAP Init.) 4.740
Ours (Poisson Init.) 4.316

Ours 4.887

Table 3.2: Quantitative analysis for 2D mesh editing. APAP outperforms its baselines in quantitative
evaluation using k-NN GIQA [25].

is grounded.

Methods Preference (%) ↑

ARAP [90] 41.7
Ours 58.3

Table 3.3: User study preference for 3D mesh deformation. In a user study targeting users on Amazon
Mechanical Turk (MTurk), the results produced using ours were preferred over the outputs from the
baseline.

Quantitative Evaluation. Tab. 3.2 summarizes k-NN GIQA scores measured on the outputs from
ARAP [90] (the first row) and APAP (the sixth row) using APAP-Bench 2D. As shown, APAP
demonstrates superior performance over ARAP [90]. This again verifies the observations from qualitative
evaluation where ARAP [90] introduces distortions that harm visual plausibility. As in qualitative
evaluation, we also report the k-NN GIQA score of DragDiffusion [83], degraded due to artifacts caused
during direct manipulation of latents.

User Study. We further conduct user studies for a more accurate perceptual analysis. We follow
Ritchie [76] and recruit participants on Amazon Mechanical Turk (MTurk).

For 3D mesh deformation, we asked user study participants to compare rendered images of meshes
deformed using ARAP [90] and APAP. Each participant is provided with 20 image pairs and asked to
select one image at each time given the question: “Which edited image is more realistic and plausible?
Choose one of the following images.” An example of a questionnaire displayed to the participants is shown
in Fig. 3.6 (left). To check whether the response from a participant is reliable, all questionnaires include
vigilance tests requiring participants to select the more visually plausible image between two options, one
of which is an edited result from DragDiffusion [83] containing noticeable visual artifacts. An example
of a vigilance test is shown in Fig. 3.6 (right). We present 5 vigilance tests and collect 47 responses from
the participants who passed the vigilance test. As summarized in Tab. 3.3, the deformation produced
by APAP is preferred over the results from ARAP [90].

Similarly to 3D mesh deformation, we evaluate the quality of 2D mesh editing through a user study
in which participants compare the editing results of ARAP [90] and APAP. Each participant is given
a set of 20 randomly selected images of the source meshes, as well as meshes edited using ARAP [90]
and APAP. In particular, we instructed participants to select the most anticipated outcome when the
displayed source image is edited by the dragging operation visualized as an arrow with the question: “A
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Methods Preference (%) ↑

ARAP [90] 40.83
Ours 59.17

Table 3.4: User study preference for 2D image editing. In a user study targeting users on Amazon
Mechanical Turk (MTurk), the results produced using ours were preferred over the outputs from the
baseline.

Figure 3.6: Examples of questionnaires displayed during the user study (3D shape deformation). During
the user study, we asked the participants to evaluate 20 different result pairs from ARAP [90] and ours
as shown on the left. To check whether a participant is focusing on the user study, we included 5 items
for the vigilance test. As shown on the right, a vigilance test asks a participant to compare two images,
with one of them containing noticeable artifacts.

visual designer wants to modify the object by clicking on a red point and dragging it in the direction of the
arrow. Please choose a result that best satisfies the designer’s edit, while retaining the characteristics
and plausibility of the object.” Fig. 3.7 (left) shows an example of a questionnaire provided to the
participants. For vigilance tests, we included an editing result from DragDiffusion [83] depicting an
object irrelevant to the source image in each question. The participants were asked to answer the same
question. We illustrate an example questionnaire of a vigilance test in Fig. 3.7 (right). We collect 102
responses from the participants who passed 5 vigilance tests. Tab. 3.4 shows a higher preference of the
participants on our method over ARAP [90] implying that our method produces more visually plausible
deformations.

Figure 3.7: Examples of questionnaires displayed during the user study (2D mesh editing). During the
user study, we asked the participants to evaluate 20 different result pairs from ARAP [90] and ours as
shown on the left. To check whether a participant is focusing on the user study, we included 5 items for
the vigilance test. As shown on the right, a question for the vigilance test includes an image of an object
that is not related to the source image.
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Ablation Study. While designing the algorithm illustrated in Alg. 1, we considered other options
for FirstStage. Instead of optimizing Lh to initially deform a shape, we used a shape produced by
ARAP [90] or by solving a Poisson’s equation constrained not only on anchor positions but also on
handles at their target positions reached by following the given edit directions. We report k-NN GIQA
scores of the alternatives in the fourth and fifth row of Tab. 3.2, respectively. Both initialization strategies
degrade the plausibility of results due to large distortions introduced by either solely enforcing local
rigidity or, finding least square solutions without updating Jacobians.

In Fig. 3.8, we summarize the qualitative results obtained by (1) optimizing only Lh, (2) Lh and
LSDS without LoRA finetuning, (3) skipping the FirstStage, (4) using ARAP initialization, (5) using
Poisson initialization, and (6) Ours. Optimizing only Lh (the second column) either distorts texture
(the fifth row) or inflates or shrinks other parts of the given shape (the seventh and twelfth row).
This demonstrates the necessity of a visual prior during deformation. Also, we observe the cases where
skipping the FirstStage (the fourth column) does not lead to intended deformation as our diffusion prior
is reluctant to modify shapes from their original states (the first, second, and fifth row). On the other
hand, deformations initialized with the meshes produced by ARAP [90] (the fifth column) or Poisson
solve (the sixth column) suffer from distortions that could not be resolved by optimizing LSDS in the
SecondStage.

3.5 Conclusion

We presented APAP, a novel deformation framework that tackles the problem of plausibility-aware shape
deformation while offering intuitive controls over a wide range of shapes represented as triangular meshes.
To this end, we carefully orchestrate two core components, a learnable Jacobian-based parameterization
that originates from geometry processing and powerful 2D priors acquired by text-to-image diffusion
models trained on Internet-scale datasets. We assessed the performance of the proposed method against
an existing geometric-prior-based deformation technique and also thoroughly investigated the significance
of our design choices through experiments.
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Source Lh Only No LoRA [33] SecondStage Only ARAP Init. Poisson Init. Ours

Figure 3.8: Ablation study for 2D mesh editing. We examine the impact of each design choice on
deformation outputs, including the use of diffusion prior (the second column), LoRA finetuning (the third
column), two-stage pipeline (the fourth column), and initialization strategies during the FirstStage (the
fifth and sixth column).
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Chapter 4. Conclusion

Throughout this thesis, we have discussed a series of works focused on integrating learned priors into
mesh deformation, addressing the challenges posed by the lack of large 3D shape collections, which are
costly to populate.

In Ch. 2, we introduced Neural Pose Representation (NPR), a novel hybrid representation designed
for pose generation and transfer of non-rigid object poses, along with its learning framework. This
representation enables accurate pose transfer to different objects, even when trained solely on the pose
variations of a single object. Its transferability and generalizability further support pose generation for
diverse objects. This is achieved by training a diffusion model on pose representations extracted from
one object and transferring the generated representations to others.

Taking one step further, we explored an even more challenging scenario in Ch. 3, where no 3D shape
examples are available. To address this, we proposed As-Plausible-As-Possible (APAP), a plausibility-
aware mesh deformation technique that leverages the prior knowledge of 2D diffusion models in place
of 3D shape examples. APAP orchestrates a powerful 2D diffusion model and a Jacobian field pa-
rameterization of the given shape and performs an iterative optimization to satisfy both the plausibility
constraints imposed by the diffusion model and the handle constraints defined by the user. This combina-
tion enables APAP to outperform an existing baseline that relies solely on geometric priors, highlighting
the effectiveness of learned priors even in the absence of direct supervision through 3D shape examples.

Our work demonstrates the effectiveness of learned priors for mesh deformation, even when trained
on a limited number of 3D shape examples or only 2D images. Additionally, we aim to pursue the
following promising directions for future exploration. For instance, extending our approach to alternative
3D shape representations, such as point clouds and implicit functions, could enable intuitive control
over emerging formats like neural radiance fields [65] and Gaussian splats [44]. Furthermore, recent
advancements in text-to-video generative models [96, 121, 57] present an opportunity for text-driven
motion generation. These models could eliminate the need for motion sequence data, which are even
more challenging to collect than 3D shape data.
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[6] Ilya Baran and Jovan Popović. Automatic Rigging and Animation of 3D Characters. ACM TOG, 2007.
[7] Ilya Baran, Daniel Vlasic, Eitan Grinspun, and Jovan Popović. Semantic deformation transfer. ACM TOG,
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연구경험이전무했던제가어엿한연구자로성장할수있도록오랜시간가장가까이에서지켜봐주시고

이끌어 주신 성민혁 교수님께 진심으로 감사드립니다. 지금까지의 성취는 학부 연구생 시절부터 석사 과정
에 이르기까지 교수님께서 아낌없이 주신 격려와 조언, 그리고 가르침이 없었다면 결코 이루어낼 수 없었을
것입니다. 매 순간 학문과 후학 양성에 힘쓰시는 교수님의 모습을 보며, 참된 연구자의 길이 무엇인지 깊이
깨달을 수 있었습니다. 제가 진심으로 존경할 수 있는 분을 스승으로 만난 것은 제게 큰 축복이었습니다.

또한, 본 학위논문의 심사를 위해 귀중한 시간을 내주시고, 심사 과정에서 소중한 조언과 통찰을 주신
전산학부 김민혁 교수님과 윤성의 교수님께 깊이 감사드립니다. 학부 시절 두 분의 컴퓨터 그래픽스와 비전
강의를 통해 기초를 다졌던 저로서는, 두 분을 심사위원으로 모실 수 있었던 것이 큰 영광이었습니다.

연구실 생활을 함께하며 힘이 되어준 연구실 동료들에게도 감사의 마음을 전합니다. 학문적인 논의를
넘어, 때로는 즐거운 순간들을, 때로는 힘든 순간들을 스스럼없이 나눌 수 있는 사람들과 함께 일할 수 있어
참으로 행복했습니다. 특히 연구실 초창기부터 함께해 준 주일이 형, 현진이 형, 건호 형, 은지 누나, 유승이
형, 찬혁이, Charlie를 비롯해 유쾌하고 따뜻한 형이 되어준 재훈이 형과 찬호 형, 탁월함과 엉뚱함을 두루
갖춘 동갑 친구 지성이와 태훈이 형, 어느덧 반년을 함께한 민규 형과, 배울 점이 많은 후배 경민이까지,
모두가 뛰어난 실력만큼이나 따뜻한 마음씨를 가졌기에, 이들과 함께할 수 있었던 시간은 제게 과분한 행운
이었다고 생각합니다. 이와 더불어, 연구에 매진하는 동안 묵묵히 곁을 지켜준 오랜 친구들에게도 진심으로
감사의 마음을 전합니다. 일이 바빠 몇 달에 한 번씩 얼굴을 비추는 부족한 친구 곁에서 늘 변함없이 힘이
되어주어 고마울 뿐입니다.

끝으로, 지금까지 제가 걸어온 길을 응원해 주신 어머니, 아버지께 이 논문을 바칩니다. 무뚝뚝하고
표현이 서툰 큰아들에게 종종 서운하지는 않으셨을까 하는 걱정과 미안한 마음이 앞섭니다. 제가 긴 고민과
방황에 지쳐 있을 때면 말없이 다가와 안락한 울타리가 되어 저를 품어주신 부모님, 사랑합니다. 그리고
하나뿐인 내 동생 시현이, 앞으로는 늘 건강하고 행복하자.
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Curriculum Vitae in Korean

이 름: 유 승 우

생 년 월 일: 2001년 01월 15일

출 생 지: 전라북도 전주시 (現 전북특별자치도 전주시)

학 력

2017. 3. – 2019. 2. 전북과학고등학교

2019. 2. – 2023. 8. KAIST 전산학부 (학사)

2023. 8. – 2025. 2. KAIST 전산학부 (석사)

경 력

2019 – 2022 대통령과학장학생

2021 – 2023 KAIST Visual AI Group 학부 인턴

2024 대학원대통령과학장학생

연 구 업 적

1. Juil Koo*, Seungwoo Yoo*, Minh Hieu Nguyen*, and Minhyuk Sung. SALAD: Part-Level Latent
Diffusion for 3D Shape Generation and Manipulation. In ICCV, 2023.

2. Seungwoo Yoo*, Kunho Kim*, Vladimir G. Kim, and Minhyuk Sung. As-Plausible-As-Possible:
Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors. In CVPR, 2024.

3. Seungwoo Yoo, Juil Koo, Kyeongmin Yeo, and Minhyuk Sung. Neural Pose Representation
Learning for Generating and Transferring Non-Rigid Object Poses. In NeurIPS, 2024.
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