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Figure 1: Neural Green’s Function. We propose a neural solution operator designed for linear
PDEs whose differential operators admit eigendecompositions. Our framework effectively handles
irregular geometries and diverse source and boundary functions. In the steady-state thermal analysis
used as a model problem, our method demonstrates superior generalization performance compared to
state-of-the-art neural operators in predicting ground-truth solutions (column 2), as evidenced by the
error maps (columns 3-6).

Abstract

We introduce Neural Green’s Function, a neural solution operator for linear partial
differential equations (PDEs) whose differential operators admit eigendecompo-
sitions. Inspired by Green’s functions, the solution operators of linear PDEs that
depend exclusively on the domain geometry, we design Neural Green’s Function to
imitate their behavior, achieving superior generalization across diverse irregular ge-
ometries and source and boundary functions. Specifically, Neural Green’s Function
extracts per-point features from a volumetric point cloud representing the problem
domain and uses them to predict a decomposition of the solution operator, which is
subsequently applied to evaluate solutions via numerical integration. Unlike recent
learning-based solution operators, which often struggle to generalize to unseen
source or boundary functions, our framework is, by design, agnostic to the specific
functions used during training, enabling robust and efficient generalization. In
the steady-state thermal analysis of mechanical part geometries from the MCB
dataset, Neural Green’s Function outperforms state-of-the-art neural operators,
achieving an average error reduction of 13.9% across five shape categories, while
being up to 350 times faster than a numerical solver that requires computationally
expensive meshing.
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1 Introduction

Linear partial differential equations (PDEs) play a central role in many scientific and engineering
disciplines, such as thermal analysis, electrostatics, fluid dynamics, and elasticity. Similar to other
PDE:s, their ubiquity has driven the development of numerical methods, such as finite difference
methods (FDMs) and finite element methods (FEMs), to solve the equation defined over complex
geometric domains in real-world applications where analytical solutions are often unavailable. These
techniques discretize problem domains into fine-grained meshes of lattices or polygons, resulting in
linear systems that can be constructed and solved efficiently. However, the reliance on meshes poses
a significant limitation, as generating them requires running computationally expensive meshing
algorithms [[13} [14], making it challenging to rapidly evaluate solutions across multiple problem
domains with different boundaries. This bottleneck is especially pronounced during the early design
phase of engineering workflows, where rapid iteration is essential for achieving optimal results.

Recently, learning-based solvers have emerged as promising surrogates to conventional numerical
solvers for solving PDEs. They predict solutions without mesh construction, either by optimizing
a neural network to parameterize the solution function for a given problem instance [30, [19] or by
learning solution operators that map input functions to solutions, enabling inference with a single
forward pass [20-22, 26} 23| [12}, 136l 35| 34} 13]]. While these approaches significantly improve
efficiency compared to numerical solvers and provide less expensive approximations, little attention
has been paid to their generalization capabilities under simultaneous variations in problem domains,
source functions, and boundary functions. Some previous methods focus on learning the solutions
to PDE problems within a single domain [30} 25, [27]], requiring re-training whenever the problem
domain or even a specific problem instance changes. Approaches such as Boullé et al. [6], Teng
et al. [31], and Negi et al. [28] address this by learning the solution operator for a given domain,
enabling the handling of different problem instances. However, they still require re-training when
applied to different domains. Others [20-22} 26| 23] [12} 36} 35]] attempt to learn solution operators
that generalize across a collection of shapes but often struggle to handle unseen source functions
and boundary functions. This limitation arises because these inputs are directly provided to the
neural networks that regress the solution operators, requiring sufficient training examples to achieve
generalization.

In this work, we propose a learnable solution operator capable of handling various shapes and func-
tions, with a specific focus on linear PDEs whose differential operators admit eigendecompositions,
such as the Poisson and Biharmonic equations. The foundation of our approach is rooted in the
mathematical definition of the solution operator for a linear PDE, known as the Green’s function,
which only depends on the geometry of the problem domain. Once the Green’s function of a domain
is known, the linearity allows solutions to be computed for arbitrary source and boundary functions.
This unique property motivated the design of our framework, which predicts neural features solely
from the domain geometry. These features are used to approximate the eigendecomposition of
the corresponding Green’s function and to predict related differential quantities, such as per-vertex
masses, that are essential for computing solutions via numerical integration. This design imposes a
strong prior on the solution operator learned by the neural network, making the model independent of
the specific source and boundary functions used during training.

In our experiments, we first empirically validate the generalizability of the proposed framework using
simple examples of the Poisson and Biharmonic equations. We then extend the evaluation to a practical
setting of steady-state thermal analysis on complex 3D geometries, using a benchmark we built from
the MCB dataset [16]. This benchmark comprises a diverse collection of mechanical part geometries,
each paired with a steady-state thermal distribution obtained by solving Poisson’s equation. The
dataset features a wide variety of shapes with significant intra-class variations, along with triplets of
source, boundary, and solution functions generated by a numerical solver, providing a challenging
benchmark setup for both baselines and our method. In comparisons, Neural Green’s Function
demonstrates superior generalizability compared to state-of-the-art neural operators [35, 134 [3]].
Notably, our framework reduces the error metric by 13.9 % compared to Transolver [35]], while
sharing the same backbone. These results highlight the significance of explicitly formulating and
predicting solution operators in achieving superior generalization capabilities.

2 Related Work

Physics-Informed Neural Networks (PINNs). Physics-Informed Neural Networks (PINNs) [30]
parameterize the solution of each PDE instance directly using a neural network, and optimize its



parameters by minimizing objective functions derived from the governing equations and empirical
observations. They can be easily implemented using automatic differentiation, which is supported
by deep learning frameworks [29, [2, [7]. However, PINNs are trained separately for each problem
instance, with each neural network approximating a single solution at a time. This approach requires
retraining whenever the problem domain, source function, or boundary condition changes.

Neural Operators. Unlike PINNs, Neural Operators learn function-to-function mappings that act
as solution operators for PDEs. They achieve this by parameterizing (nonlinear) kernel functions
and implicitly perform kernel integration across subsequent network layers. Specifically, GNO [20]
employs graph neural networks (GNN5s) to approximate integral kernels through local aggregation via
message-passing. FNO [21] improves efficiency and performance by utilizing fast Fourier transform
(FFT) [10] in regular domains and learning global integral kernels in the spectral domain. Follow-up
work [22| 26] combine GNO [20] and FNO [21]] to handle irregular problem domains by efficiently
modeling both local and global interactions within systems. Several work [24, 23|12} 36] utilizing
Transformers [33]] architecture have also been proposed, leveraging self-attention mechanism to
capture interactions among mesh points. These work bypass the quadratic complexity of self-attention
layers using linear Transformers [[18} 9, |8]. Recent work further reduce the computational complexity
by incorporating compact latent representations with dimensionalities significantly smaller than mesh
sizes [35] 134} 13]]. Neural operators are a versatile framework for operator learning over irregular
geometries with diverse source and boundary functions. However, they often couple input meshes
with sampled function values, which makes generalization to new functions challenging.

Learning Green’s Functions. Several recent work focus on linear PDEs and propose data-driven
approaches to discovering the Green’s function of a problem domain, enabling solutions for varying
source and boundary functions. Boullé et al. [6]] propose a method to learn Green’s functions for
linear PDEs using pairs of forcing and solution functions, leveraging rational neural networks [5].
Teng et al. [31] extend this approach by enabling the evaluation of solutions with arbitrary source
and boundary functions, regressing Green’s functions through the approximation of Dirac delta
functions with Gaussian distributions. Similarly, Negi et al. [28] approximate free-space Green’s
functions using a radial basis function (RBF) kernel-based neural network. By directly learning
Green’s functions, the aforementioned approaches can predict solutions for PDEs with varying source
and boundary functions. However, these methods are restricted to individual problem domains and
require retraining for unseen geometries, as the networks learn domain-specific Green’s functions
and their gradients. Additionally, they focus on simple domains (e.g., circular domains in 2D),
where numerical quadrature for computing solutions with predicted Green’s functions is relatively
straightforward. Our work addresses these limitations through a framework design inspired by the
eigendecomposition of Green’s functions for linear PDEs. In particular, the framework learns to
extract geometric features from problem domains and composes them to reconstruct the corresponding
Green’s functions. Moreover, our approach predicts differential quantities needed to approximate
numerical integration over complex, irregular geometries, extending its applicability to real-world
scenarios, as demonstrated in Sec. [5}

3 Background

Consider a linear PDE subject to Dirichlet boundary conditions defined over a continuous domain
D c R% with boundary dD:
{Eu(x) =f(z) ze€eD

u(z) =h(x) x€9D, S
where L is a linear differential operator, and u, f, and h are functions that reside in Banach spaces U,
F, and ‘H of functions, respectively. The solution operator G for Eqn. [I|that computes the solution
u= G (D, f,h) is the mapping:
G:DxFxH—=U, 2)
where D is a set of problem domains. Since Eqn. [T]is a linear PDE, G is explicitly given as:

u(x) =Gp (f,h)
_ /D G (2,) f () dy 3)

n / h(y)V,Gp (z,9) - n(y)dy,
oD



where Gp = G(D,-,-) is an instantiation of G in the domain D and n(y) is the outward normal
vector at y € 0D, respectively. The integral kernel Gp : D x D — R, referred to as the Green’s
Sfunction of the operator £ in D, represents its impulse response and is a solution of:

{EGD(x,y) =d(x—vy), ze€D

Gp(z,y) =0, x€dD @

where ¢ is the Dirac delta function. One important property of Gp and Green’s function G, is that
they only depend on the geometry of the domain D, regardless of the specific source function f
or boundary function h. This implies that, once the Green’s function G for a given domain D
is known, the PDE in Eqn. [I| can be solved for arbitrary source and boundary functions f and h.
However, solutions based on Eqn. [3]have only been applied to simple domains where closed-form
expressions for Green’s functions are available.

Numerical solvers, on the other hand, utilize a volumetric mesh representing D to discretize the
operator L in Eqn. I} forming a discrete counterpart represented as linear systems. Assume that D is
represented as a mesh D = (V, T) of a single connected component, consisting of vertices V and
faces T. We define a selection matrix S € {0, 1}Nb “Nv 1o indicate N, boundary vertices among the
N, vertices, and its complement K € {0, 1}(N” XN represent the remaining interior vertices.
The scalar-valued source function f and the boundary function h are discretized by sampling their
values at the vertices, resulting in two vectors: f € R™V> and h € R™», respectively. Then, Eqn. can
be written as a linear system in its discrete form:

Lu=Mf st Su=h, 5)

where L € RV»*Nv ig the discretization of £ and M € RN»*Nv is the mass matrix of the mesh D,
respectively. The solution to this system can be written as:

=K {(KLK") ™" (KMf - KLS"h) } +S"h
=K" {G (KMf — KLS"h)} + S™h,

(6)

where G = (KLK7) 1 ¢ RWo=No)X(No=Nb) represents the inverse of the matrix L restricted to
the interior of the domain. The detailed derivation can be found in the Appendix. The matrix G
serves the same role as the Green’s function discussed in Sec. [3| Notably, the terms G, M, and K
in Eqn. [6] are independent of the given functions f and h, analogous to the Green’s function G p
in Eqn.[3] This independence implies that the solution operator for Eqn. [5]can be approximated by
predicting these terms using only the geometric information of the mesh D.

Assuming that L is symmetric, its submatrix KLK”, obtained by eliminating the rows and columns
corresponding to the boundary vertices, is also symmetric. Furthermore, if the imposed boundary
conditions are sufficient, KLK” becomes full-rank and admits the following eigendecomposition:

G =dA'®T, (7

where ® € RWVv—=Ne)x(No=Nb) g the matrix whose columns are the eigenvectors of KLKT,
and A € RINv=No)x(No=No) jg the diagonal matrix of positive eigenvalues corresponding to the
eigenvectors in ®. These properties form the basis of our novel framework, designed to predict
solutions of linear PDEs across diverse irregular geometries, as detailed in the following section.

4 Neural Green’s Function

Numerical solvers are well-established tools for solving linear PDEs; however, they rely on the
volumetric mesh D generated from surface representations (e.g., boundary representations in CAD),
which can be computationally expensive. This poses a challenge to rapid iteration, which is essential
in the early stages of design exploration.

Directly applying neural surrogate models [20-22} 26, 24, [23] |12} 36, 135] may help mitigate this
issue by enabling coordinate-based solution queries, eliminating the need for the mesh D. These
models effectively capture complex behaviors of nonlinear systems by encoding both query points,
along with source and boundary functions, into learned latent representations. However, for the
class of linear PDEs discussed in Sec. 3] we claim that a stronger prior can be incorporated into the
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Figure 2: Method overview. Given query points representing the geometry of the problem domain
where the solution function is to be predicted, Neural Green’s Function extracts neural features that
are subsequently used to approximate the Green’s function and to predict the differential quantities
required to evaluate Eqn.[6] The example is rendered using a tetrahedral mesh, which is used solely
for visualization purposes.

operator design to improve its generalization capability. In the following, we discuss how the design
of Neural Green’s Function, inspired by Green’s functions, enables generalization to unseen source
and boundary functions. Although we mainly focus on problems in 3D space, our approach is not
limited to a particular dimension.

Our framework, as outlined in Fig. P] takes a set of query points Q in 3D space that represents
the geometry of the domain D. These points can be obtained through interior point queries [4],
thereby avoiding the costly domain meshing. From these query points, we extract features that are
used to approximate Green’s functions at the corresponding points, rather than directly predicting
the solutions. While the query points are associated with a source function f evaluated at QQ and a
boundary function h sampled at the boundary points, our network remains agnostic to these functions.
This independence is the key for achieving generalization to unseen functions.

Specifically, we employ a neural network with parameters  to predict features ®, € RIQ*4 for all
query points, whose coordinates are provided as inputs to the network. These predicted features are
then utilized to construct our neural Green’s function Gg, which serves as a drop-in replacement for
the ground-truth Green’s function G in Eqn. [6] Inspired by Eqn.[7} we compute each element of Gy
as the dot product of feature vectors predicted for two interior points. The computation of Gy for all
pairs of points is efficiently parallelized through a single matrix multiplication:

Gy = (K®y) (K®y)" . (8)

Since the mass matrix M and the submatrix KLS7 of the operator L are unavailable without a mesh
D, we also predict these quantities to evaluate Eqn. [6] In particular, we employ an MLP to decode
per-vertex features ®¢ into per-vertex mass values My, using the Softplus activation to ensure that the

predicted masses are positive. Similarly to Gy, the submatrix L = KLST is predicted by computing
dot products between features ¥y € RIQI*<, which are decoded from ®4 by another MLP:

Ly = (K¥) (S¥)" . ©)
Lastly, these components are combined to evaluate Eqn. [6}
up = KT {Ge (KMgf _ tgh)} +8Th, (10)
yielding the predicted solution uyg.

Given a dataset of NV examples { (ui, fi, hi) }i\;l generated by solving Eqn. using an FEM solver

-~ . . . . AN
on meshes {DZ }¢:1 along with their corresponding mass matrices {Mz }¢:1’ the network parameters
6 are optimized end-to-end by minimizing the empirical risk:

6 = argminE; [[ju’ — w3 + MM — diag (M) [3], (11)
where A > 0 is a regularization weight applied to the predicted mass values to ensure consistency with

the ground truth. We observe that regularizing the predicted masses is essential for the convergence
of network training, as discussed further in Sec. In all our experiments, we set A = 1.



5 Experiment

5.1 Experiment Setup

In this section, we outline the baselines, evaluation metric, and implementation details of our
experiments, while deferring detailed descriptions of the problem setups to their respective sections.

Baselines. For 2D Poisson and Biharmonic examples in Sec. we compare Neural Green’s
Function against Transolver [35], the state-of-the-art neural operator. In Sec. we further expand
the set of baselines to conduct a more comprehensive evaluation in steady-state thermal analysis. This
includes Transolver [35], Latent Neural Operator (LNO) [134]], and Universal Physics Transformer
(UPT) [3]]. For all baselines, we use their official implementations and train the networks under the
same configuration as ours. For neural operators that require conditioning on source and boundary
functions, we follow the approach of Transolver [35] and LNO [34], concatenating the source and
boundary function values at the query points as inputs to the baseline models.

Evaluation Metrics. Following the baselines [35] [34] [3]], the error e(u, up) between the predicted
solution uy and the corresponding ground truth u is measured as the relative L, distance:
[[lug — ulls

[[ull2

which is averaged over the entire test set for quantitative comparisons.

e(u,up) = (12)

Implementation Details. We adopt the network architecture of Transolver [33]], a state-of-the-art
neural operator and one of our baseline methods, to extract the features ®4, encouraging feature
sharing across query points. Specifically, our network consists of an MLP that maps coordinates
of query points to latent representations. The layer is followed by eight Transolver blocks [35] and
MLP heads that decode them into the components required to evaluate Eqn. Unless otherwise
specified, all models in our experiments are trained for 40 epochs using the ADAM optimizer [17]
with a OneCycleLR learning rate scheduler, setting the maximum learning rate to 1 x 10~%. For
the steady-state thermal analysis experiments in Sec.[5.3] we use a batch size of 1 and accumulate
gradients over 8 training steps to stabilize training, to handle meshes with a large number of vertices.

5.2 Two-Dimensional Poisson and Biharmonic Equations

We first assess the generalization capability of Neural Green’s Function to unseen source and boundary
functions, by fixing the problem domain to a unit square [0, 1] x [0, 1] in 2D. The domain is discretized
with the resolution of 100 x 100 by uniformly placing grid points along the two axes. As model
problems, we consider Poisson and Biharmonic equations defined over this domain.

Problem instances of Poisson’s equation are generated using boundary functions instantiated from
the template that satisfies Au = 0:

u(z,y) = A(:,C?’ — 3:Uy2) + B(y3 — 3x2y) + 22, (13)

with the source function set to zero within the domain interior. We use 100 training and 100 test
examples, each generated by sampling tuples of coefficients (A, B). To ensure that the boundary
functions at test time do not overlap with those used for training, we sample coefficients from the
uniform distribution ¢/[—1, 1] for the training set, and from I/[1, 2] for the test set.

For Biharmonic equation, we consider the template
u(z,y) = A(z" — 62y* + y*) + Bz' + Cy', (14)

which satisfies A%2u = 0. Analogous to the Poisson’s equation setup, we use 100 training and 100
test examples, generated by sampling coefficients over different ranges. For the training set, the
coefficients (A4, B, C') are drawn from U[—1, 1], while for the test set, they are sampled from U[1, 2].

For both setups, we train our Neural Green’s Function and Transolver [35] for 40 and 200 epochs,
respectively. We increase the number of training epochs for Transolver to account for its slower
convergence in training loss. After training, we evaluate both models on the test set by computing
the relative Lo error across all examples. As summarized in Tab.|l| Neural Green’s Function, which



| Poisson’s Equation | Biharmonic Equation

| Train Set Test Set | Train Set Test Set
Transolver (Wu et al. [35]) 0.053 0.372 0.025 0.337
Ours 0.014 0.012 0.010 0.009

Table 1: Relative L, errors measured on the training and test sets of 2D Poisson and Biharmonic
equation examples. In both setups, our method achieves comparable errors on the training and test
sets, whereas Transolver [35]] exhibits a notable gap due to its network being jointly conditioned on
both domain geometry and boundary functions.

SCREWS & NuTt MoOTOR FITTING GEAR
BoLTs
Transolver (Wu et al. [35]) 0.221 0.320 0.407 0.180 0.281
LNO (Wang & Wang [34]) 0.239 0.372 0.528 0.259 0.466
UPT (Alkin et al. [3]]) 0.358 0.516 0.765 0.392 0.507
Ours 0.189 0.275 0.338 0.160 0.243
Error Reduction (%) \ 14.7 14.1 16.9 10.8 133

Table 2: Relative L, errors measured on the test sets of the steady-state thermal analysis
benchmark. Our method achieves the lowest relative Lo error across all five shape categories.
Notably, it improves the metric of Transolver [35] by an average of 13.9%, despite utilizing the same
network architecture. The error reduction is the difference between the two errors, divided by the
second-best error.

relies solely on features extracted from the domain geometry while remaining agnostic to the specific
boundary functions used during training, generalizes well compared to Transolver [35], whose
network is jointly conditioned on both domain geometry and boundary functions.

5.3 Steady-State Thermal Analysis

Building on the observations from Sec.[5.2] we extend our

experiments to a more challenging and practical task, steady-

state thermal analysis on complex 3D geometries. This ™ ' @ ) &_‘ /ﬁ 4

task is appropriate for evaluating the generalizability of \);/ ~

our framework to unseen problem domains, beyond the : N ;
source and boundary functions considered in the previous % -~ ) a/; "‘aﬁ ﬁé
section. To this end, we construct a new PDE benchmark % ‘ ,',‘7
using the MCB dataset [16], which contains a variety of 3D

mechanical part shapes. We generate tetrahedral meshes __

for shapes in five categories (SCREWS & BOLTS, NUT, Figure 3: Example shapes from our
MOTOR, FITTING, and GEAR) by meshing the interiors dataset. Our dataset comprises diverse
of unit-cube-normalized shapes using £TetWild [14]. The mechanical part shapes from the MCB
shape collection is divided into 200 shapes for training and dataset [16], designed to evaluate the
20 shapes for testing to evaluate generalization to unseen eneralizability of learning-based PDE
problem domains. We illustrate several example shapes SCIVers across shape variations.

in Fig.[3] As shown, the shape collection used in the experiments includes shapes with thin structures
and intricate details. Additionally, shapes within the same category can have significantly different
geometries, presenting a challenge for learned solution operators to generalize effectively across
diverse geometries.

To generate PDE examples, we employ an off-the-shelf FEM solver [[11] to solve Poisson’s equation
defined on the shapes in our dataset. These problems are constructed using different source and
boundary functions derived from predefined templates, details of which are provided in the Appendix.
Specifically, we use 8 source functions for training and reserve an additional 8§ for testing. For bound-
ary functions, we use 2 for training and 2 for testing. This setup results in 16 unique combinations
of source and boundary functions for training, while 16 entirely unseen combinations are used for
testing. It offers greater problem diversity than other benchmarks for PDEs on irregular geometries,
such as ShapeNet-CFD [32], which assumes a fixed driving velocity. Overall, the dataset comprises
3200 shape-problem pairs for training and 320 pairs for testing across all categories.
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Figure 4: Qualitative comparison. For each ground-truth solution in columns one and six, the
per-point Lo errors from various methods are visualized in the error maps across the remaining
columns. Red denotes higher values in the columns labeled “GT”, while in the error maps, brighter
colors indicate greater errors. Neural Green’s Function demonstrates its ability to accurately predict
solutions on irregular geometries from diverse domains. Compared to state-of-the-art neural operators
trained to directly map source and boundary functions to solutions, our method achieves lower errors,
as indicated by the darker regions in the error maps. The examples are rendered using tetrahedral
meshes, that are used solely for visualization purposes. Best viewed when zoomed-in.

Quantitative Analysis. In Tab. 2] we summarize the errors measured on the test sets of five
shape categories using the baselines and our method. Neural Green’s Function consistently achieves
lower errors compared to the baselines, demonstrating the effectiveness of the proposed method that
explicitly predicts the solution operator. Compared to Transolver [35] which achieves the second-best
errors across all categories, our method achieves an average error reduction of 13.9%, calculated as
the difference between the best and second-best errors, divided by the latter. Since our framework
utilizes the network architecture of Transolver [33] as its backbone, this improvement highlights the
significance of incorporating a prior on the solution operator.
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Figure 5: Qualitative results from the ablation study. For each ground-truth solution in columns
one and four, we visualize the per-point Lo errors from variants of our method in the remaining
columns. Red denotes higher values in the columns labeled “GT”, while in the error maps, brighter
colors indicate greater errors. The examples are rendered using tetrahedral meshes, that are used
solely for visualization purposes. Best viewed when zoomed-in.

Qualitative Analysis. Qualitative results from five categories—FITTING (rows 1-2), SCREWS &
BOLTS (rows 3-5), MOTOR (rows 6-7), NUT (rows 8—10), and GEAR (rows 11-13)—are presented
in Fig. 4] Additional results can be found in the Appendix. For each example, we display color
maps of the ground-truth solutions from the dataset, labeled as “GT”, alongside error maps of the
predictions generated by different methods. In the solution visualizations, red indicates higher values,
while in the error maps, brighter colors represent greater errors. We visualize the slices taken along
one of the canonical axes (z, y, z) of each shape for clarity. The darker error maps, compared to
those of the baselines, demonstrate that our method produces more accurate predictions, validating
our observations from the quantitative analysis. Our method better handles irregular shapes with
intricate details, such as thin structures of MOTOR shapes (rows 6-7), or the cogs of GEAR shapes
(rows 11-13).

Runtime Analysis. We evaluate the efficiency of our framework by comparing it with an FEM
solver and neural operator baselines [35} 34} 3], measuring the total runtimes required to process the
test sets. The runtimes are summarized in Tab.[6] All reported runtimes are measured in seconds,
with each sample processed sequentially to minimize system load and prevent interference that could
impact the timing of other samples. Compared to the FEM solver, Neural Green’s Function benefits
greatly from not requiring mesh generation, which accounts for the majority of the processing time
in the FEM pipeline. Notably, it achieves a substantial reduction in runtime, being up to 350 times
faster than FEM. Furthermore, Neural Green’s Function introduces only minimal computational
overhead compared to neural operator baselines [35} 34 3] while delivering superior generalizability
and performance, as discussed previously. Details of this analysis, including the breakdown of the
runtimes, are provided in the Appendix.

Transolver (s) LNO (s) UPT (s)
FEM Total (s) (Wu et al. [33]) (Wang & Wang [34]) (Alkin et al. [3]) Ours (5)
SCREWS & BOLTS 12.956 0.033 0.022 0.056 0.039
NuT 12.238 0.022 0.020 0.076 0.051
MOTOR 50.095 0.090 0.088 0.166 0.140
FITTING 18.439 0.032 0.030 0.076 0.059
GEAR 46.384 0.188 0.187 0.246 0.225

Table 3: Runtime comparison against an FEM solver and neural operators. Our approach
achieves up to a 350 x speedup over the FEM solver, which requires mesh generation, while main-
taining comparable runtime to neural operator baselines and delivering improved generalizability and
performance. All runtimes are reported in seconds.

5.4 Ablation Study

We analyze the impact of mass regularization during training and the effect of feature dimensionality
on model performance. In Tab.[d] we report the test errors of our model and its variant trained
without mass regularization, denoted as “Ours (No Mass Reg.)”, on the SCREWS & BOLTS and
GEAR categories. As reflected in the errors, regularizing the mass prediction outputs from our model



| SCREWS & BOLTS GEAR d \ 64 128 256
Ours (No Mass Reg.) 0.285 0411 Relative Lo \ 0.180 0.189 0.206
Ours 0.189 0.243

Table 4: Quantitative results from the ablation
study. Regularization of the mass predictions is

Table 5: Analysis of feature dimension. The
model’s performance remains consistent across
different feature dimension choices.

crucial for performance.

is crucial for performance. This is because the per-vertex masses involved in Eqn. [I0]are typically
very small (approximately on the order of 1 x 10~%), leading to instability during the early stages of
network training when the initial mass predictions deviate significantly in scale from the ground-truth
values. Qualitative results showcased in Fig. [5]further support this observation: the model trained
with mass regularization produces more accurate predictions, as evidenced by the darker regions in
the error maps (columns 2-3 and 5-6).

On the other hand, we examine whether the model’s performance is sensitive to the dimensionality d
of the feature representation ®y. Intuitively, ®4 plays a role of the eigenvectors in Eqn. |7} serving
as low-rank bases for approximating the operator matrix. To assess this, we train variants of our
framework, which by default uses 128-dimensional feature vectors, with alternative configurations
employing 64 and 256 dimensions. All models are trained on the SCREWS & BOLTS class using
the same setup as in our main experiments, and the relative Lo errors on the test set are reported in
Tab. E} As shown, the model’s performance remains insensitive to the choice of feature dimension,
highlighting that even 64 learned bases are sufficient to accurately approximate the solution operator.

6 Conclusion

We present Neural Green’s Function, a solution operator specialized in linear PDEs whose differential
operators admit eigendecompositions, capable of generalizing across diverse domains, source and
boundary functions. Our framework incorporates the principles of Green’s functions into its design
by extracting neural features solely from the geometries of problem domains. These features are then
used to approximate the corresponding Green’s functions and related differential quantities, which
are subsequently utilized to perform numerical integration for solution prediction. We empirically
validate our design choice by applying Neural Green’s Function to solve the Poisson and Biharmonic
equations on 2D domains, and further demonstrate that it outperforms state-of-the-art neural operators
on a challenging 3D benchmark encompassing a wide variety of shapes and Poisson equation instances
defined over them. In particular, Neural Green’s Function achieves a 13.9% improvement over the
best performing baseline, while accelerating solution evaluation by 350 in steady-state thermal
analysis involving complex 3D geometries. These results highlight the superior generalizability of
our framework across problem domains, as well as diverse source and boundary functions.

Limitations and Future Work. While we believe our approach represents a step toward developing
generalizable, data-driven solution operators for PDEs, it is not without limitations. In particular,
extending our framework to a broader class of linear PDEs and incorporating additional boundary
conditions, such as Neumann and Robin, are promising future directions. Moreover, although our
framework achieves runtimes comparable to existing neural operator baselines, further acceleration
of the numerical integration step during the forward pass would facilitate its practical application.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, the abstract and introduction conveys the core idea of the main text.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: While we do not discuss the limitation in the main paper, we will include it in
the revision.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not make theoretical claims that require proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed experiment setup required to reproduce the results
presented in the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We plan to release the code and data required to reproduce the results upon
acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper discuss the settings of the experiments reported in the main text.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: No, the reported results do not include error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide an runtime analysis.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We find no significant ethical issue while working on this work.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: While the paper does not include statements on broader impacts, we plan to
include it in the revision.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that the models and data used in this work have low potential of
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have included references to the original datasets used in the experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release the dataset and a documentation upon acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In the following, we present the derivation of Eqn. [6]in Sec. [A] details of the problem templates
used to define the source and boundary functions for the steady-state thermal analysis experiment
(Sec.[5.3) in Sec. [B] details of the runtime analysis presented in Sec.[5.3]in Sec.[C] and additional
qualitative results in Sec.

A Derivation of the Solution for the Linear System
While the derivation of Eqn. [6|from Eqn. [j]is straightforward, we include the step-by-step derivation
for completeness.

Let us decompose the solution u into interior and boundary components using the section matrices K
and S:

u =K u, + STh, (15)
where uj, € R(V»=No) denotes the solution of Eqn. within the domain.
As u satisfies Eqn. [5] we have:
L (K"ujp + STh) = M. (16)

Expanding the left-hand side and rearranging terms yields:

LK”uy, = Mf — LSTh. (17)

By left-multiplying K, we obtain
KLK uj = KMf — KLS"h. (18)

Assuming KLK? is full-rank, which is ensured by imposing appropriate boundary conditions, u;y
can be written as:

U = G (KMf — KLS"h) , (19)
where G = (KLKT) - Substituting this result into Eqn. |15|gives us Eqn. El
B Details of Problem Templates

When constructing the benchmark used for the steady-state thermal analysis experiment in Sec.[5.3]
the source functions f are populated from the following template:

f(z,y,2) = A{sin Az - cos ACmy
+ (1 — cos Arz) - (1 — sin ABwy) (20)
+sin® ADnz},
with the coefficients A = {1.25,2.5}, B = {1.5,3.5}, C = {1.5,3.5}, and D = {1.5,3.5},
resulting in 16 different combinations. Similarly, the boundary functions are generated using the
template:
h(z,y,2) = B(z® — 3zy%) + F(y* — 32y)
4 (IEQ _ 2:2),
using 4 distinct combinations of the coefficients: £ = {—1.0,1.0} and F' = {0.0,1.0}.
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C Details of Runtime Analysis

In this section, we provide additional details of runtime analysis in Sec.[5.3] We use the binary
compiled from the official implementation of £TetWild [14] for generating tetrahedral meshes. The
implementation supports multi-core processing, and we used the default parameters with an edge
length of 0.02 for mesh generation. To populate the query points used for measuring runtimes, we
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Meshing (s) Solve (s) FEM Total (s) ‘ 1PQ (s) Ours Forward (s) Ours Total (s)

SCREWS & BOLTS 12.579 0.377 12.956 0.016 0.023 0.039
Nut 11.601 0.637 12.238 0.014 0.038 0.051
MoToR 48.661 1.434 50.095 0.082 0.058 0.140
FITTING 18.037 0.401 18.439 0.024 0.035 0.059
GEAR 45.803 0.581 46.384 0.180 0.044 0.225

Table 6: Breakdown of runtime comparison with the FEM solver. The total runtime of the FEM
solver includes both the meshing and linear solve times, whereas our runtime is computed as the sum
of the time required for the interior point query (denoted IPQ) and the network forward pass. All
runtimes are reported in seconds.

Transolver LNO UPT o
(Wu et al. [33]) (Wang & Wang [34]) (Alkin et al. [3]) urs
| IPQ(s) | Forward (s) Total (s) | Forward (s) Total (s) | Forward (s) Total (s) | Forward (s) Total (s)
SCREWS & BOLTS| 0.016 0.017 0.033 0.006 0.022 0.040 0.056 0.023 0.039
Nut 0.014 0.008 0.022 0.006 0.020 0.062 0.076 0.038 0.051
MOTOR 0.082 0.008 0.090 0.006 0.088 0.084 0.166 0.058 0.140
FITTING 0.024 0.008 0.032 0.006 0.030 0.052 0.076 0.035 0.059
GEAR 0.180 0.008 0.188 0.007 0.187 0.066 0.246 0.044 0.225

Table 7: Breakdown of runtime comparison with neural operators. The total runtime of each
neural operator is computed as the sum of the time required for the interior point query (denoted IPQ)
and the network forward pass. All runtimes are reported in seconds.

uniformly sample the 3D space and determine whether each point lies inside the domain using the
Fast Winding Number [4] implemented in 1ibigl [[15]. To ensure a fair comparison with our method,
which leverages GPU acceleration during network inference, we re-implemented the solver algorithm
from [[L1] to support GPU acceleration. In particular, we utilize Cholespy][l]], a GPU-accelerated
Cholesky solver, for matrix prefactorization to solve Eqn.[5] The runtime breakdowns corresponding
to the results in Tab. [3]are presented in Tab. [6]and [7} respectively, each of which summarizing the
time spent in each stage of the FEM solver—including meshing and solving linear systems—as well
as, for the neural operators, the time required for interior point queries (IPQ) and network forward
passes. All runtimes are measured on a system equipped with an Intel Xeon Gold 6442Y processor
with 24 cores and an NVIDIA RTX 3090 GPU with 24 GB of VRAM.
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D Additional Qualitative Results
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Figure 6: Additional qualitative comparison. For each ground-truth solution in columns one
and six, the per-point Lo errors from various methods are visualized in the error maps across the
remaining columns.
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